
A Framework for Developing Secure Application in Service –
Oriented Architecture

Fariba Roozbeh
Department of computer, Arak Branch, Islamic Azad University,

Arak, Iran
f_roozbeh10@yahoo.com

*Corresponding author: Fariba roozbeh

Abstract

Service Oriented Architecture (SOA) is one of the most
popular concepts to implement different systems. However it
faces many challenges in terms of security. As a result, a
number of standard and frame works are formed as
supporters. The main purpose of this survey is to create a
model for a secure Service-oriented Architecture (SOA)
based on a formal model specified in the Alloy modeling
language.
The proposed model is based on the basic SOA as well as
CIA and include secure identities, secure interaction, secure
publish and secure discover. To validate that our model is
secure, we created an Alloy model for security. We create
predicates that model our security definitions and the
obstacles which violate these security definitions. Then we
use each security definition against the obstacle that violates
it to define secure elements in our model.

Keywords: SOA, Confidentiality Integrity Availability (CIA),
authentication, authorization, non-repudiation, alloy

1. Introduction

Though not a novel concept and emerging in 1990s,
service-oriented architecture (SOA) appears with new
ability in performing and realizing through related
equipments and protocols. This architecture includes
an approach to design and implement the distributed
systems in which system function is utilized as a
service by users and other services. Some reasons
appear in welcoming this architecture including:
reducing the production costs, protecting the software
due to reusability, and possibility to facile system
development and upgrade.

On the other hand one must note that using this
architecture necessitates ensuring the security
requirements, for the unsafe technology results from
inefficiency and non-operational function.
Consequently, the notion of security is of particular
importance in this architecture. Thus, despite the
advantages of this architecture in terms of the usage,
efficient security models and frameworks are included
among necessary terms, not to say enough. These
models also must be checked in accuracy. In this
regard, there are numerous methods one of which is
formal method.

This research aims at presenting a service-oriented
architecture model which regards the security
requirements. In this paper, we have presented a
security structure, according to the features of service-
oriented architecture and its basic structure, and
considering the basic security principles and other
security requirements for service-oriented architecture.
Then, making use of Alloy analyst, we studied the
mentioned structure from the security perspective.

1.1 Service-oriented Architecture
"Service-oriented architecture", as a term, represents

a model in which automation logic is broken down into
smaller separate units of logic which can be distributed
separately[2] .

the basic structure of service-oriented architecture
includes three elements: service provider, service
requestor, and service registry, and three standards
including web service definition language (WSDL),
simple object access protocol (SOAP) and universal
description discovery and integration (UDDI) makes it
complete.

The illustrated structure in Fig. 1 for the general
operation of service-oriented architecture, is largely
accepted by references: [2]

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

24

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Service provider: A service provider, usually an
organization, creates and develops services. A service
provider defines the service implementing, service
description and business support for a particular
service [5] .

Service requester: The service requester uses service
and makes interactions to it. Service requester can
utilize service in order to combine the operational
programs through combination of available services.
This element uses service registry in finding the
service and is connected to service directly. Service
requester may be an individual or another service [6] .

Service registry: Service registry includes a set of
available services. Service registry spreads the
available data in terms of its services in service registry
in which the service requester can find the data about
the available services[7] .

WSDL: it defines a service, and this definition
conveys a couple of service aspects: service signature
and data about developing and submitting the details.
This data is described by XML (extensible Markup
Language), a language, apart from platform, for data
communication [8] .

SOAP: It presents a definition that, according to
XML, can be used for exchanging data among
existences in a distributed non-central context. This
signal includes a header and a body [8] .

UDDI: Medium programs that publish and recognize
web services and include a registry in which the
service providers publish their service in order that
others can recognize them. This technology arranges
the services and, after presenting a description,
allocates the resulting data in a central store [9] .

1.2 Security and the Service-Oriented
Architecture

Security requirements for architecture and
automation solutions are not novel in the world of
information technology. Consequently, service-
oriented operational programs need to be equipped in
order to manage many traditional security
requirements for protecting the data and ensuring of
authorized data availability. The following includes the
relation between service-oriented architecture and

security principles through CIA triad and WS-security
framework.

1.2.1 CIA Triad
In conceptual field, the data security is founded upon
three primary principles: confidentiality, integrity and
availability. These security principles make a security
triad called CIA triad. Fig.2 illustrates each one of
these security principles along with available
technologies in its accomplishment from the
service-oriented architecture.

Service-oriented architecture consists of a set of
requestors, providers, services and data.

Confidentiality
By confidentiality, in data security, we mean

"providing mechanisms for protecting inputs and data
and private information from unauthorized existences".
Unauthorized availability of the private information
has Destructive consequences not only in national
security programs, but also in industry and trade
market [10] .

In service-oriented architecture, confidentiality takes
place through a couple of mechanisms: access control
and encryption. Access control guarantees that a valid

existence (either a user or an operational program) has
access to an entity or a service. Encryption means
inserting a mathematical algorithm key to a clear
context in order to create an unreadable or cipher text
[3] .

Integrity
Another basic principle of security in service-oriented
architecture is integrity, which has some definitions
with the same meaning:

 Integrity is a purpose during whose
accomplishment no data or input can change,
or if they are clearly authorized to change[11]
.

 Integrity guarantees that the content of the
signal, from moving from source to delivering
to the recipient in the destination, has not
changed [2] .

In general, it is perceived from integrity that a
protected signal is regarded as a unified unit and a

Fig. 1. Basic structure of service orientation [2]

Fig.2. Service oriented architecture and CIA[3]

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

25

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

process cannot make any change in it partly or
completely.
Integrity is discussed from two viewpoints: data
integrity and the integrity of origin [11] .
The data integrity guarantees that the data is not under
risk, and consequently, it is reliable in a period. The
integrity of origin, on the other hand, guarantees that
the information about recipient is valid. Both of these
are implemented through equal encryption which is the
very digital signature [11] .

Availability
As stated formerly, data availability is one of the
security principles. When authorized users cannot
reach the sources, there is no need for principles such
as confidentiality and integrity. Thus, availability is of
the same importance as confidentiality and integrity.

Availability ensures us that the users easily reach to
the authorized data [10]. In addition to availability as
an important aspect of reliability, it also guarantees an
existing source. In terms of security, availability means
undeniability. Perhaps, one makes use of a source,
reaches the data or call a service under particular
Conditions; such usages must be undeniable[11] .

1.2.2 WS-security
The WS-security is regarded as the main component

of service-oriented solutions. Security operations can
be located on the data exchange in layered form to
protect the data content of the recipient [2]. WS-
Security framework and its descriptions providing the
primary QOS (Quality of service) requirements,
enables the organizations to:

 Use service-oriented solutions for the
process of the private and particular
inputs.

 Limit the services availability if
necessary.

As it is illustrated in Fig.3 the WS-Security framework
uses WS-Policy framework.

1.3 Alloy
Alloy is referred both to a language and a tool; it was
created by Daniel Jackson and the Software
Development group in MIT University. This language

conveys a modeling based on first-order logic used for
defining limitations and complex behaviors.[12] The
idea of Alloy is to provide a simple and partly
automatic approach for software developers to write
and test the official features of the software design.
The Alloy system includes these three elements [12]:

 Alloy Logic, a combination of relative
algebra and predicate logic, determines the
combination method for the relationship
between various primary inputs in Alloy
and the value of the statement result.

 Alloy language used for expressing the
specifications according to Alloy logic,
defines the key terms and Alloy structural
descriptions.

 Alloy analysis that creates model samples
to confirm the consistently of a description
or to violate the assertions.

Signature
A signature represents set of atoms. Atoms are the
primary existing entities or the very basic elements
having three following specifications:
Indivisible, Immutable, uninterpreted
1| sig Person {}
Creates a new group called 'Person'; if put key term
'Abstract' before 'Person', it means that the 'Person'
group has no element except those belonging to its
subdivisions. In order to create limitation in the field of
atoms in a group, Alloy uses key words such as 'lone',
'one', 'some', 'no'.

Alloy Operators
Alloy has some operators of which the most important
we introduce here:
1| a + b, a - b, a & b // union, difference and
intersection of a and b
2| ~e // e transposed
3| ^e // transitive closure of e
4 |*e // reflexive-transitive closure of e
5|a.b // (relational) join of a and b
6| a -> b //product of a and b
7| a in b // true if a is a subset of b

Expressions
Alloy logic supports three styles of expression writing

Fig.3 .Security in service-oriented architecture [2]

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

26

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

including "Predicate Calculus Style", "Navigation
Expression Style", and "Rational Calculus Style".
These styles can be combined if necessary.
Facts, functions and predicates
There is no high level expression in Alloy. Each
expression is contained in a block, enclosed in braces.
A fact block holds expressions which form a constraint
on the model, as they must always hold (example 1,
lines 16-19). A predicate defines a reusable limit
(example 1, lines 33-35). A function defines a reusable
expression (example 1, lines 28-31). Predicates and
functions can have either no or numerous arguments.
Functions can return a result.

A function or predicate which can be applied to a
single value can always be applied to multiple values
as well.For instance, Grandpas function (example 1,
lines 28-31) can be applied on one or more 'Person' and
return their results.

Modules
Alloy specifications are stored in text files with the file
extension .als. Each file is called a module and it can
enter the elements of a module using the open
statement. If foo.asl includes
1| sig ThisIsFoo {}
Then bar.asl can use the following signature:
1| open foo
2| sig ThisIsBar extends ThisIsFoo {}
If names become ambiguous, e.g., because bar.als
contains a signature with the same name as one in
foo.als, then the module name can be prepended to the
signature name.
The module can also be renamed dynamically by using
the as keyword:
1| open foo as f // foo is now known as f
2| sig ThisIsFoo {} // signature with an ambiguous
name
3| sig ThisIsBar extends f/ThisIsFoo {}
// extends the imported signature
Imported modules are per default expected in the same
directory.

Analysis using the Alloy Model Finder
There are two kinds of tests that the analyzer can run.
For a simulation, the analyzer tries to find a model
which respects all the constraints given, called an
“example”. In the checking mode, the analyzer tries to
find a “counterexample” which violates an assertion.
For both tests, an appropriate command, run and
check respectively, must be contained in the
specification. It is followed by the name of a predicate
or assertion which is to be tested and an upper limit for
the number of atoms for each signature. By default,
this limit applies to all signatures, but exceptions can
be defined: The scope for a specific signature may be
set to a higher or lower value, or the number of atoms
can be set to a fixed value by using the exactly
keyword (example 1, lines 38 & 41). If no limit is
defined for an atom, as default, Alloy will apply the
test for number 'three'.

To find an example or counterexample, the Alloy
Analyzer translates the specification into the input to a
SAT solver[13] . Once the solver has found a
satisfying assignment, the Alloy software tool
visualizes the result. The “Evaluator” window allows
the live evaluation of expressions in the context of the
solution.

Example Specification and Analysis
The following Alloy specification (example 1,
grandpa.asl) formalizes a simple example. It is a
module header which determines its name. The
complete name of module equals its path and is stored
in system file. Our example Module is stored in a file
called 'language/grandpa.asl'. The 'person' group solely
includes a couple of elements: 'man' and 'woman'. Each
man can have either no or one woman having 'wife'
relationship to it. Each woman can have either no or
one man having 'husband' relationship to it.

A fact is a limit to be satisfied all the time. For
instance, the fact beginning in line 16 of above
example says that no one can ever be his forebear, and
if one is a husband of another, the other is his wife, and
vice versa.

'No self father' assertion, in this example, says that
no one can ever be his father, and this is always valid,
and no counter example is found for it. 'grandpas'
function primarily determines that the parents include
mother, father or their spouses, and that the
grandfather is a man who is the father of the parents.
The following example illustrates Alloy specifications.

1| module language/grandpa
2|
3| abstract sig Person {
4| father: lone Man
5| mother: lone Woman
6| }
7|
8| sig Man extends Person {
9| wife: lone Woman
10| }
11|
12| sig Woman extends Person {
13| husband: lone Man
14| }
15|
16| fact {
17| no p: Person | p in p.^(mother+father)
18| wife = ~husband
19| }
20|
21| assert NoSelfFather {
22| no m: Man | m = m.father
23| }
24|
25| // This should not find any counterexample.
26| check NoSelfFather
27|

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

27

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Example. 1. some specification of Alloy

28| fun grandpas [p: Person] : set Person {
29| let parent = mother + father +

father.wife + mother.husband |
30| p.parent.parent & Man
31| }
32|
33| pred ownGrandpa [p: Person] {
34| p in p.grandpas
35| }
36|
37| // This generates an instance similar to Fig1-3
38| run ownGrandpa for 4 Person
39|
40| // This generates an instance similar to Fig 2-3
41| run Grandpas

Instructing the Alloy Analyzer to run all tests on this
specification produces the following output in the
command log of the software:

Executing "Check NoSelfFather" :No counterexample
found. NoSelfFather may be valid.
Executing "Run ownGrandpa for 4 Person" :
ownGrandpa is consistent.
Executing "Run grandpas": grandpas is consistent

The primary output of Alloy is a directed graph, which
can be seen in the “instance window” of the analyzer
software. The atoms, or objects, are shown as nodes,
while the relations are the edges. The nodes’ shapes
and colors are chosen arbitrarily and convey no special
meaning. If there exists more than one atom for a
signature, numbers are assigned to the atoms. Note that
Alloy does not necessarily produce small or minimal
examples. There may, and almost always will be atoms
which are not needed to fulfill the constraints.

The first command, Check 'No Self Father' is an
assertion; as you see Alloy did not find any counter
example; thus the assertion is valid.

The second command is Run 'Own Grandpa for 4
Person' that performs 'own grandpa' for four Person. In
Fig. 6 one of the created results for this command, the
result of Run 'Own Grandpa for 4 Person', is
illustrated.

The last command is Run 'grandpas' that performs
the 'grandpas' function. Fig .4 presents one of the
results created for this command.

2. Available Models of Service - Oriented
Security
We discuss briefly some available models for service-
oriented architecture security that provides its
requirements.

IBM: Reference Model for service-Oriented
Architecture Security
To accomplish the goals and security requirements in
service-oriented architecture, IBM has also presented a
logical architecture illustrated in Fig. 5 .This
architecture can be defined in three abstract levels:
Business security services, IT security services, and
security policy management. Also, there is a security
enabler for presenting security functions to IT security
services[4] .

NSTISSI: A General Model for Data System Security
CNSS (Committee on National Security Systems)
represents a model for data systems that at the same
time functions as a tool for system evaluation and
development. The model is unique in that it stands
independent of technology[1] .

Fig. 6.The result of executing Run 'owngrandpa for 4

Fig .4. The result of executing Run 'grandpas'

Fig. 5. IBM Model for service-Oriented Architecture Security [4]

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

28

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

As it is illustrated in Fig .7, three dimensions are
supposed for this model that addresses all security
requirements of a data system [1] .

3. The Proposed Security Model
Our recommended security model is proposed
according to the basic structure of service-oriented
architecture and basic security requirements. We also
concerned security principles such as authorization,
authentication, and non-repudiation. In Fig.8 , the
recommended model is illustrated.
Secure identities: we concern a secure identity for all
three available elements in service-oriented
architecture. Reaching the sources can differ from one
identity to another. As an instance, discovering a
registered service in the service store must be limited
to a particular recipient. A requestor makes use of
identity to reach his intended service. Both service
provider and service requestor may use their identities
for encryption and registration of exchanging
messages. In order that a service is available for an
identity, primarily, one has to investigate whether the
presented identity is valid, and then, one has to find
whether the definite identity is authorized to reach the
intended service or not. As a result, the two features of
authorization and authentication must be considered in
the field of the identities in secure service-oriented
architecture.
Secure interaction: An interaction between the service-
provider and service requestor, to prevent the threats,

must be secure. In this regard, security means
authentication, authorization, confidentiality, integrity,
and non-repudiation [14]. In the interaction between a
service provider and a service requestor, both parties
must be informed of each other's identities and
availability licenses. Thus, in a secure interaction both
parties must be studied in terms of authentication and
authorization. On the other hand, according to the
security triad, the confidentiality, integrity and
availability must be preserved as well. In security
issues, availability means non-repudiation [11]. That
includes two parts: sending non-repudiation and
receiving non-repudiation.
Secure publish and discovery: Solely the authorized
service provider whose identity is studied can register
in service store. The service requestor also must be
authenticated before reaching the service store to see
whether he has the availability license or not. During
the service publish and discovery, the integrity and
confidentiality of the store must be protected. If,
during this connection, above requirements are
observed, one can ensure that the connection is secure.
Error! Reference source not found. includes
observed security principles for the recommended
model elements.

Table 1. Elements of security principles in secure service –
oriented architecture

Secure publish
and discovery

Secure
interaction

Secure
identitySecurity Principles

√√confidentiality
√√integrity

availability
√√√authentication
√√√authorization

√non-repudiation

4. Modeling a Secure Service-Oriented
Architecture
Using Alloy language, we created the features of
intended models which are to be studied as follows. In
modeling, some definitions of [15] are used.

Fig .7.General model for data systems security[1]

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

29

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Authentication: if an authentic protected message is
received by an identity, the identity will recognize the
message and knows that the source was authorized to
write that message. Generally, for authentication, the
authority to write theory is used for recognizing the
sender.

Pred authentication () {
all t: time | all m:Protected_Msg | all
r:Identity |one record: Sent | one c: CanWrite
|(m->t in r.knows) => (c.writer =
m.lastWriter) &&
(record.sender =c.writer) &&

(c.msg = m) && (record.msg =m) && (c->t
in r.knows) && (record->t in r.knows)
}

Performing above statement, Fig.10 is formed.

Authorization: it means, if an identity tends to read or
write a message, it must be included in the content of
authorized identities.
pred authorization(){

 all I: Identity |all c: CanWrite |
 I in c.writer =>
 I in c.msg.protected_by.hasWrite
 all I: Identity | all R: CanRead|
 I in R.Reader =>
I in R.msg.protected_by.hasRead
}
if an identity is not informed of the message content
and is not authorized to reach it, it cannot reach it at
any other time.
The result of above definition is illustrated in Fig.9 and
Fig.11. According to Fig.9 'identity 1' is an identity
able to read 'canread', for it is authorized by policy to
read. In Fig.11, 'Identity 1' is an identity that is able to
write in protected messages 'CanWrite', for it is
authorized to write by policy.

Fig.8 . proposed model for the security of service-oriented architecture

Fig.10 . the result of Authentication

Fig.9.the result of Authorization (can read)

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

30

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Confidentiality: in general, confidentiality means that
the determined readers can reach the message content.
That is, er time.
pred Confidentiality(){

all t: time - t0/last[] | all a: Identity | all
m:Protected_Msg |
let t' = t0/next[t] |

 ((m->t in a.knows) &&(m.contents->
t not in a.knows) &&
(a not in m.protected_by.hasRead)) =>
(m.contents->t' not in a.knows)

 }
The result of performing above definition is illustrated
in Fig.12.
According to Fig.12, the components of
'Protected_Msg' are protected via 'Policy0', and this
policy cannot reach 'Identity0'. Consequently, although
in 'time0', 'Identity0' is infirmed of 'Protected_Msg', it
cannot reach the contents in 'time1'
Integrity: it is understood from integrity that a
protected message is regarded as a unity, and an
unauthorized identity cannot make a change in a whole
or a part of the message. Operationally, integrity
means that an attempt in changing a message without
writing authority destroys the protected message. It is
studied in this definition that there is at least one
identity for a protected message that is the source of
message and is authorized to write.
pred Integrity(){

 all m :Msg | some p: Identity |
 m in Protected_Msg =>
(p in m.protected_by.hasWrite &&
m.lastWriter = p)

 }

The result of operating the integrity definition is
illustrated in Fig.13. The identity that writes on
'protected_Msg' is the source of message and the 'last
writer' which was authorized 'hasWrite' to write on it.

Non-repudiation send: it refers to the disability of the
message source to send the received message. There is
at least one identity that knows another identity has
sent the message and that is the source of the message.

pred NonRepudiationSenderSide(){
 all t: time | all m: Msg |

all p,q: Identity |all record: Sent |
(record.sender = q) &&

 (record.msg = m) &&
(record->t in p.knows) =>
(m.lastWriter = q)
}

Fig.11. the result of Authorization (can write)

Fig.13.the result of integrity

Fig.12. the result of confidentiality

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

31

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

The result of operating the definition of non-
repudiation send is illustrated in Fig.14 in which
'identity0' knows what [sent], and knows that
'identity1' is the 'lastWriter' and it has sent the message
(sender).
Non-repudiation receive: it refers to disability of the
recipient to receive the sent message. There is at least
one identity that knows another identity has received
the message and knows it.

pred NonRepudiationReceiverSide(){
all t:time | all m: Msg |
all p,q: Identity| all record: Recvd |
(record.recvr= q) &&(record.msg = m) &&
(record->t in p.knows) =>
(m->t in q.knows)

}

The result of non-repudiation receive is shown in
Fig.16. 'identity0' has received the 'Msg' and 'identity1'
knows that 'identity0' has received this message
(Knows[received]). 'Identity0' knows 'Msg'.

5. Evaluating the Proposed Model
To evaluate the proposed model, first we define the
threats of every security requirement; then, according
to proposed model, we claim that the principles for the
proposed model are observed. To do this, we operate
the definitions of security principles along with their
threats, and obviously it is concluded that it does not
accord such systems.

Modeling the Security Threats
Fraud: this threat invalidates the authentication
requirement. A special identity sends a protected
message whose source is another identity message.
Fig. ١۵ shows the created example in Alloy. In this
figure, 'Identity0' is the sender of a protected message
that 'Identity1' is its resource. In other words, an
identity introduces itself instead of the other, and this
invalidates the authentication requirement.

pred Fraud{
 all t: time | some m: Protected_Msg |
 some r: Sent | some p: Identity |
 (r.sender != m.lastWriter) &&
 (r.msg = m) && (m->t in p.knows)
}

Fig.14.the result of integrity (send)

Fig.16. the result of integrity (receive)

Fig. ١۵ . Fraud

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

32

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Unauthorized availability: this threat rejects the
authorization security requirement. In this case, the
identity reads a message without having authority for
reading it. It reads the message content, or with no
authority, writes on a protected message. Fig.18 shows
the created example in Alloy in which 'Identity0',
having no authority of 'hasWrite' for writing, has made
changes on the protected message. This threat rejects
the authorization requirement.

pred Unauthorized{
 Some s: CanWrite |s.writer not in
s.msg.protected_by.hasWrite
 Some d: CanRead |d.Reader not in
d.msg.protected_by.hasRead

}

Spy: this threat invalidates the security requirement of
confidentiality. In this case, some identities are able to
get informed of message content without an authority
to read.
Pred spy(){

some Iden:Identity | some m:Protected_Msg | some
t: (time – t0/last[]) – t0/prev[t0/last[]] | let t' =
t0/next[t] | let t'' = t0/next[t'] | (Iden not in
m.protected_by.hasRead) &&
 (m->t in Iden.knows) && (m.contents->
 t not in Iden.knows) &&
 (m.contents-> t'' in Iden.knows) }

Fig.17 illustrates the created example in Alloy.
According to Fig.17, at 'time0' the 'itdentity1' is
informed of 'protected_Msg'; however, it does not
know its contents, and is not allowed to reach it. But at
'time1', 'Identity1' can reach the contents of the
message. This point invalidates the definition of
confidentiality.

Distortion: this threat invalidates the security
requirement of integrity. In this case, there are some
protected messages whose resource, that is, the identity
written on them last time, has not been authorized to
write.
pred distortion(){

some m: Protected_Msg | (m.lastWriter not in
m.protected_by.hasWrite)

}

Fig.20 illustrates the example created in Alloy. It
indicates that 'Identity0' is the source of the protected
message. While the message is protected through
'policy0' and according to this policy 'Identity1' is
authorized to write on the protected message.
Accordingly, the definition of integrity is invalidated
and the intended message is distorted by 'Identity0'.

Fig.18.unauthorized availability

Fig.17. spy

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

33

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Sending denial: this threat invalidates the security
requirement of non-repudiation. In this case, an
identity sends a particular message, while according to
other identities; it is the source of message of another
identity.
pred DeniableSending(){

all t:time | one p,q: Identity | one m: Msg | one r:
Sent |r.sender = q &&
r.msg = m && r->t in p.knows &&
q != m.lastWriter

}
Fig.19 illustrates the created example in Alloy.
According to this figure, 'Identity0' sends the protected
message in a way that others suppose 'Identity1' as the
source of the message; that is, 'Identity0' has sent a
denied sending. This definition invalidates the
undeniable sending.
Receive denial: this threat invalidates the security
requirement of undeniable receive. In this case, the
identities know that an identity has received a
message; but the recipient identity is not aware of the
message content; that is, the receiver identity denies
receiving the message.
pred DeniableReception(){

all t: time | one p,q: Identity| one m: Msg | one
record: Recvd |record.recvr = q && record.msg =
m && record->t in p.knows && m->t not in
q.knows

}
Fig.21 shows the created example in Alloy. 'Identity1'
knows that 'Identity0" has received the message, but
'Identity0' is not aware of the message; that is, there is
no relation of 'knows' in terms of 'Identity0' to the

message. In general, receiving the message by
'Identity0' is denied.

Fig.19 . sending denial

Fig.21. Receive denial

Fig.20. Distortion

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

34

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Studying the presented Security Model
Up to this point, the definition of each security
principle, along with their threats was presented. Also,
the created examples in Alloy were illustrated. Now,
according to the proposed model, we assert that the
mentioned principles of the intended model are
observed. To accomplish this aim, we practice the
security principles definitions with their threats, and
then show that this is not a compatible system.
As stated above, to have a secure identity needs the
practice of authorization and authentication on
identities. We assert that an identity is secure; to
confirm it, we must show the discordance between the
definition of authentication and the threat of
unauthorized availability. For our assertion, we make
use of the following command:
assert secureIdentity {

!(authentication[]and Fraud[]) and
!(authorization[]and Unauthorized[])
}

Then, we study the above assert through this
command:

check secureIdentity

and the result of Alloy analysis will be:

Executing "Check secureIdentity":No counterexample
found. Assertion may be valid”

It concludes the accuracy of our asserion, and that the
identity is secure through given specification.
For a secure interaction between service provider and
service requestor, we had to observe authentication,
authorization, integrity, confidentiality, and non-
repudiation. According to the mentioned definitions for
these principles and their threats, we use the following
code for a secure interaction:

assert secureinteract {
 !(authentication[]and Fraud[]) and
 !(authorization[] and Unauthorized[]) and
 !(Confidentiality[] and spy[]) and
 !(Integrity[] and distortion[]) and
 !(NonRepudiationReceiverSide[] and
 DeniableReception[]) and
 !(NonRepudiationSenderSide[] and
 DeniableSending[])
}

Then, we study the above assert through this
command:

check secureinteract
and the result of Alloy analysis will be:

Executing " check secureinteract":No counterexample
found. Assertion may be valid

This conclusion proves our assertion as correct and the
identity is secure through given specification.
To have a secure publish between service provider and
the service registry, and also to have a secure
discovery between the service requestor and the
service registry, we had to practice the authentication,
authorization, confidentiality, and integrity. According
to the definitions of the principles and their threats, to
have a secure publish and discovery, we make use of
the following commands:

assert securepublish {
!(authentication[]and Fraud[])and
!(authorization[] and Unauthorized[]) and
!(Confidentiality[] and spy[]) and
!(Integrity[] and distortion[])
}

assert securediscover {
!(authentication[]and Fraud[])and
!(authorization[] and Unauthorized[])
!(Confidentiality[] and spy[]) and
!(Integrity[] and distortion[])
}

Then, we study the above assertion through these
commands:
check securepublish
check securediscover

The following is the conclusion of Alloy analysis, and
our assertion is correct and the identity is secure
through given specification.

Executing " check securepublish":No counterexample
found. Assertion may be valid
Executing" check securediscover":No counterexample
found. Assertion may be valid

6. Conclusion

In this article, first we studied the features and the
basic structure of service-oriented architecture; then
we investigated the subject and the importance of the
security and described a couple of models presented
for this architecture. In accordance with using Alloy as
a tool for evaluating the particular model, in this
article, we described the specification of this tool and
language through an example. Using the mentioned
notions in terms of service-oriented architecture and
security, and based on basic structure and security
principles of this model and some other security
requirements, a security model was presented for
service-oriented architecture. A secure identity was
regarded for the three existing elements in this
architecture; the authorization and authentication must
be applied on this secure identity. In suggested model,
a necessity of the secure relation between service
provider and service requestor was asserted; and we

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

35

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

believe this relation is secure when principles such as
authentication, authorization, confidentiality, integrity
and non-repudiation are concerned. In order that the
service provider can publish his service data in service
registry, authentication, authorization, confidentiality,
integrity must be preserved in this relationship. Also,
for reaching the service requestor to the particular date
through service registry, the authentication,
authorization, confidentiality, integrity principles must
be concerned in their relation.

After presenting a security model including the
determined specification, the model must be validated.
We did this through Alloy: first, we defined the
security principles in Alloy and operated them to
ensure the definitions are compatible. Then, we studied
the security threats against these principles, and made
them models to ensure that they are prototype-able in a
non-secure model. Finally, to verify the security of the
model, we operated each security definition against the
threat violate it, and we got sure that these security
definitions do not accord their threats in our model. As
a result, our proposed model is secure.

References

[1] McConnell, J. (1994). National Training Standard
for Information Systems Security (INFOSEC)
Professionals, DTIC Document.

[2] Erl, T. (2005). Service-oriented architecture
(SOA): concepts, technology, and design,
Prentice Hall Englewood Cliffs.

[3] Tipnis, A., Lomelli, I.(2009).Security: A Major
Imperative for a Service-Oriented Architecture –
HP SOA Security Model and Security
Assessment, HP Viewpoint Paper.

[4] Buecker, A., P. Ashley, et al. (2008).
Understanding SOA Security Design and
Implementation, IBM Redbooks.

[5] Papazoglou, M. P. (2003). Service-oriented
computing: Concepts, characteristics and
directions. Web Information Systems
Engineering, 2003. WISE 2003. Proceedings of
the Fourth International Conference on, IEEE.

[6] Rahaman, M. A., A. Schaad, et al. (2006).
Towards secure SOAP message exchange in a
SOA. Proceedings of the 3rd ACM workshop on
Secure web services, ACM

[7] Papazoglou, M. P. and W.-J. Van Den Heuvel
(2007). "Service oriented architectures:
approaches, technologies and research issues."
The VLDB journal 16(3): 389-415

[8] Haas, H. and A. Brown (2004). "Web services
glossary." W3C Working Group Note (11
February 2004).

[9] Newcomer, E. (2002). Understanding Web
Services: XML, Wsdl, Soap, and UDDI,
Addison-Wesley Professional.

[10] Danielyan, J. C. E. (2005). Sun Certified Security
Administrator for Solaris, Dreamtech Press.

[11] Hafner, M. and R. Breu (2009). Security
engineering for service-oriented architectures,
Springer.

[12] Jackson, D.(2006). Software Abstractions Logic,
Language, and Analysis., MIT press.

[13] Jackson, D. (2002). "Alloy: a lightweight object
modelling notation." ACM Transactions on
Software Engineering and Methodology
(TOSEM) 11(2): 256-290.

[14] Nezhad, H. R. M., H. Skogsrud, et al. (2005).
"Securing Service-Based Interactions: Issues and
Directions." IEEE Distributed Systems Online.

[15] Grisham, P. S., C. L. Chen, et al. (2006).
Validation of a Security Model with the Alloy
Analyzer, October.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

36

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

