

A Reliable and Hybrid Scheduling Algorithm based on Cost and

Time Balancing for Computational Grid

Vahid GhaedRahmati
1
, Seyed.Enayatallah Alavi

2
 and Iman Attarzadeh

3

1
Department of Computer Engineering, Khouzestan Science and

Research Branch, Islamic Azad University,

Ahvaz, Iran

Rahmati@iauahvaz.ac.ir

2
Department of Computer Engineering, Shahid

Chamran university of Ahvaz, Iran
Se-alavi@yahoo.co.uk

3
Department of Computer Engineering, Dezful Branch,

Islamic Azad University Dezful, Iran

Attarzadeh@iaud.ac.ir

Abstract
Grid computing system is different from conventional distributed
computing systems by its focus on large-scale resource sharing
and open architecture for services. tasks scheduling is a crucial
problem in Grid environments. Many of grid scheduling
systems optimize completion time and cost separately. In
this paper, for solving the scheduling problem of computational
grid system used a combination of genetic algorithm and
Gravitational Emulation Local Search (GELS) algorithm and a
hybrid scheduling algorithm (RHGGSA) which considers both

the completion time and execution cost is introduced. The
algorithm applies a weighted objective function that takes into
account both the completion time and execution cost of the
tasks. To show the out performance of the proposed task
scheduling algorithm, the obtained results are compared with
those of Min-Min, GA and GA-VNS. Simulation results and
comparisons based on a set of problem demonstrated the
efficiency and effectiveness of our proposed approach.

Keywords: Task Scheduling, Grid Computing, Genetic
Algorithm, Gravitational Emulation Local Search, Cost.

1. Introduction

Grid computing is defined as “a hardware and software

infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end

computational capabilities” [1]. Therefore, a grid

computing communicates with a wide range of

Heterogeneous resources include personal computers,

workstations, super computers and clusters that each of
these resources has different computational and

configuration facilities and organized by various

management policies [2]. Thus, task scheduling is a huge

challenge in such a system. Providing an appropriate

scheduling algorithm is important and at the same time is

very difficult. Hence, these systems are faced with a NP-

hard problem to scheduling tasks to obtain high-
performance, accurate response time and maximal

revenue.

Heuristics optimization algorithm is widely used to solve a

variety of NP-complete problems. In [3], the author

proposed a new method of scheduling in grid based on

Heuristic Algorithms. Moreover, Abraham et al [4]

presented three basic heuristics implied by nature for grid

scheduling, namely Genetic Algorithm (GA) [5],

Simulated Annealing (SA) [6] and Tabu Search (TS) [7],

and heuristic derived by a combination of their three
algorithms. Furthermore, GA works well on most global

optimal problems. But, since the ability of local search in

GA is weak and also the possibility of becoming trapped

in the local optimum is high, in this paper, its combination

GELS[8] which is a local search algorithm is used to

improve its performance in finding solution. In this paper,

a cost and time balancing algorithm which is based on

Genetic and GELS algorithm is proposed. a hybrid

Algorithm named RHGGSA, is presented for static

scheduling of independent tasks within grid environments.

The Hybrid scheduling algorithm considers two QoS
criteria: makespan and execution cost of user task. The

main objective of the proposed algorithm is to reduce the

overall cost of task executions without any significant

increment in system makespan. The rest of paper is

organized as follows. We begin with an overview of

related works in section 2. our approach are presented in

section 3. Experimental results and discussion are

represented in sections 4. Finally the paper is concluded in

section 5.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

22

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

2. Related Work

In the past few years, researchers have proposed

scheduling algorithms for grid environments. However,

the problem of grid scheduling is still more complex than

the proposed solutions. Therefore, this issue attracts the

interests of the large number of researchers. For example,

In [9] have offered a model that combines two optimal
schemes, genetic algorithm (GA) and simulated annealing

(SA), based on the probability distribution. Actually, the

algorithm uses the benefits of the genetic algorithms and

simulated annealing and provides a parallel genetic-

simulated annealing algorithm to solve the task scheduling

problem in grid environments.

In [10] combination of local search algorithm were used

for scheduling by using of SA and global search by genetic

(GSA). In this approach, if in each generation, changed

chromosomes by genetic operator don’t improve

comparing to previous generation they are affected by SA

and are likely accepted for the next generation and this
work lead to increase search efficiency, further

convergence rate and ran of local minimum.

In [11] the Genetic Algorithm is presented in which both

QOS parameters including time and cost were regarded

simultaneously and because these two parameters are in

conflict each other and they can’t improve together

simultaneously and one improvement leads to efficiency

decrease in the other, it gives weight to each parameter as

the weighing is done by user as each of the parameters has

more value for the user gives more weight and the other

gives less weight, or weighting is happened randomly.
In [12] introduced a GA Algorithm which used standard

deviation less than (0.1) as stopping criterion to limit the

number of iterations of GA. This algorithm has drawbacks

such as low quality solutions (almost same as low quality

solutions of standard GA), generating initialization

population randomly (even though the time consumed by

algorithm is small comparing with standard GA), and

mutation depends on exchange of every gene in the

chromosome. This mutation will destroy the good

information in subsequent chromosomes in next

generations.
In [13] a group of researchers have developed a novel task

scheduling based on hybrid genetic and GELS algorithm.

This technique have solved grid scheduling problem and

minimize missed tasks. In this approach every

chromosome represents visible solution ,and move (pick)

solution after GA operation that better than current

solution using purpose function (fitness function) and

some of advantage of GLES algorithm in random search.

This algorithm proved that can decreases the number of

missed tasks more than other algorithms.

In [14] considered the minimization of the makespan using

GA based on Rank Roullete Wheel Selection (RRWSGA).
They use standard deviation of fitness function as a

termination condition of the algorithm. The aim of using

standard deviation is to shorten the the time consumed by

the algorithm with taking into account reasonable

performance of Computing resources (97%).

In [15] proposed an algorithm that minimizes makespan,

flowtime and time to release as well as it maximizes
reliability of grid resources. It takes transmission time and

waiting time in resource queue into account. It uses

stochastic universal sampling selection and single

exchange mutation to outperform other GAs.

In [16] propose HCSGA (Hybrid Clonal Selection GA)

and validate performance using GridSim toolkit with GA,

Max-min and Min-min. HCSGA first generates a new

group of individuals through clone and than

crossover/selection independently all the generated

individuals, respectively. The results show that HCSGA

improves convergence and is superior to other algorithm

simultaneously.
Many presented algorithms and methods in scheduling

problem within grid environments just consider one of the

users' requirements. These approaches mostly consider

system-centric factors like throughput and makespan of the

system as main objective in scheduling, ignoring the

interests and requirements of users. Some users with

budget constraints may prefer to execute their own tasks

with lower quality of service such as longer execution time

for the sake of paying a lower price. In this case, the users'

requirements become an important factor in designing

schedulers. The algorithm proposed in this paper is mainly
different from these studies, Since cost and time are two

important factors for users in grid environments, lots of

research efforts in scheduling have been focused on

presenting methods and algorithms to optimize these two

factors [17, 18]. Therefore, the cost is the most important

factor considered in this paper. In this paper, a cost and

time balancing algorithm which is based on GA and GELS

algorithm is proposed.

2.1 Genetic Algorithm

A Genetic Algorithm (GA) is a class of evolutionary,

adaptive, stochastic algorithms involving search and

optimization. Genetic algorithms were first used by J. H.

Holland [5]. The basic idea is to mimic the process of

natural evolution, in order to create artificial processes for

a “clever” algorithm with the ability to find the solution of

complex problems, such as job scheduling in

computational Grid. A GA maintains a population of

possible solutions to a problem, encoded as chromosomes

based on a particular representation scheme [19].

In each iteration the fitness of every individual in

population is evaluated. Afterwards, selection and
reproduction operators are applied, in order to form a new

population, which is again used in the next iteration of the

GA. Reproduction is constituted of crossover and mutation

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

23

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

operators. The whole process is repeated a number of

times, called generations. The pseudo-code of a typical

GA is shown in Figure 1.

Fig.1 Genetic Algorithm pseudo-code

2.2 Gravitational Emulation Local Search (GELS)

In 1995, Voudouris and his colleagues [20] suggested GLS

algorithm for searching in a searching space and NP-hard

solution for the first time. In 2004, Vebster [21] presented

it as a strong algorithm and called it GELS algorithm. This

algorithm is based on gravitational attraction and it

imitates the process of nature for searching within a

searching space. Each response has different neighbours

which can categorize based on a criteria which is depended

on the problem. Obtained neighbours in each group are

called neighbours in that dimension. For each dimension, a
primary velocity was defined which each dimension has

much primary velocity has more appropriate response for

problem. GELS algorithm calculated gravitation force

within responses in a searching space in two ways. In the

first method, a response is selected from local neighbour

space of current response and the gravitation force

between these two response was calculated. In the second

method, the gravitation force among all of the neighbour

responses in a neighbour space of current response was

calculated and it is not limited to one response. In the

movement into searching space, GELS algorithm
implements in two methods: the first method is allowed

movement from current response to in local neighbour

spaces of current response, The second method is allowed

movement to the responses out of local neighbour spaces

of current response in addition to allowed neighbour

responses of current response. Each of these transference

methods can be applied with each accounting methods

gravitation force, thus, four models are created for GELS

algorithm.

2.2.1 Parameters used in GELS algorithm

(a) Max velocity: Defines the maximum value that any

element within the velocity vector can have used to
prevent velocities that became too large to use.

(b) Radius: Sets the radius value in the gravitational force

formula; used to determine how quickly the gravitational

force can increase (or) decrease.

(c) Iterations: Defines a number of iterations of the

algorithm that will be allowed to complete before it is

automatically terminated (used to ensure that the algorithm

will terminate).

(d) Pointer: It is used to identify the direction of

movement of the elements in the vectors.

2.2.2 Gravitational force (GF)

GELS algorithm uses the formula (1) for the gravitational

force between the two solutions as

 (1)

where

G = 6.672 (Universal constant of gravitation)
CU = objective function value of the current solution

CA = objective function value of the candidate solution

R = value of radius parameter

3. Proposed Algorithm

Genetic Algorithm is weak in local search and it is strong

in global search and versus, GELS is a local search

algorithm by imitation of gravitational attraction, so it is
strong in local search and it is weak in global search. so

Considering abilities of genetic algorithms (GA) and

Gravitational Emulation Local Search (GELS), a new

scheduling algorithm named RHGGSA is presented in this

section. The proposed algorithm is a hybrid GA and GELS

which aims to reduce the overall cost of the users, while

the makespan of the system is taken into account.

RHGGSA runs the genetic as the main algorithm and uses

the GELS procedure for improving individuals in the

population. Each individual in the population is used to

generate new offsprings by applying the appropriate

genetic operators such as selection, crossover and
mutation. In the following subsections, more details about

the proposed algorithm are provided to describe the

algorithm step by step.

3.1 Encoding Mechanism

In the coding scheme we have developed for our problem,

each solution is encoded as a vector of integers. For a

Create Initial Population;

Evaluation();

While (stopping criteria not met)

{

 Selection ();

 Crossover ();

Mutation ();

Evaluation ();

}

Return best solution;

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

24

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

problem with n tasks and m resources, the length of the

vector which can be considered as a chromosome is n. As

well as, the content of each cell of vector which shows a

gene value in chromosome can take a number between 1

and m that representing the resource allocated to that task.

An example of a chromosome as a schedule with 6 tasks
and 4 resources is shown in Figure 2.

Fig.2 An example of a chromosome in coding Scheme

For generating an initial population with p individuals, a

random number between 1 and m is assigned to each cell

of the vector the size n for p times.

3.2 Objectives and Fitness Functions

Our main objective here is to get task assignments that will

achieve minimum completion time and minimum Price for

users. Therefore, our RHGGSA algorithm is a two

dimensions optimization. In this problem two objectives

Price and Makespan are in conflict with each other

naturally so that when Price is reduced then Makespan is

increased.

3.2.1 Makespan

The first objective function of our algorithm is the

Makespan or latest completion time of the task schedule.

Makespan means the longest completion time among all

the resources in the system. Consider Li and SPj denote the

size of the task i and processing speed of the resource j,

respectively. Then, the execution time of the task i on the

resource j can be formulated as follow:

 (2)

For each resource there will be a completion time for tasks

which assigned to it. For example, figure 5 shows

completion time in each resource according to figure 2.

Suppose there are 6 Tasks with the sizes in figure 3 that

are assigned to 4 resources.

Fig.3 Example of Tasks and their sizes

And there are 4 resources with following speeds:

Fig.4 Example of Resource and their Processing Speed

Then execution time of each task on allocated resource

using (2) based on Figure 2 is:

Texe(1,2) = 24 / 2 = 12

Texe(2,3) = 32 / 2.5 = 12.8

Texe(3,2) = 28 / 2 = 14

Texe(4,1) = 20 / 3 = 6.6

Texe(5,4) = 38 / 1.5 = 25.3

Texe(6,3) = 18 / 2.5 = 7.2

On the other hand, the completion time of the task i on

resource j can be defined as formula (3).

Tcomplete(i,j) = Texe(i,j) + Wait(i,j) (3)

where Wait(i, j) denotes the start time of the task i on the

resource j. Consequently, the system makespan can be

computed using formula (5).

 ∑

 1≤j≤m (4)

Where, Aj is the set of tasks indexes which are assigned to

resource j.

Makespan(α)=Max {Tcomplete(j)} 1≤j≤m (5)

Therefore, Makespan in Figure 5 is 26. One of goals is to

minimize (5), which means that the assigned tasks to

resources will be completed in the shortest time.

Fig.5 Example of Makespan

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

25

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

For example three tasks T1 and T3 are assigned to

resource R2. Therefore, completion time of tasks on R2

will be:

Tcomplete(2) = 12+14 = 26

3.2.2 Minimum Cost

second objective function is total cost that must be

minimized. Suppose Pj denotes to unit price for resource j.

Therefore, the execution cost of the task i on the resource j

can be computed using formula (6).

Cost(i,j) = Texe(i,j) × Pj (6)

Then, total cost for a chromosome is calculated as follow:

Cost(α)=∑ Cost (j) 1≤j≤m (7)

Where Cost(α) denotes the overall cost resulting from a

chromosome in population that representing a scheduling.

3.2.3 First Fitness Functions (Cost and Time

Balancing)

When introducing tasks, some users are concerned about

completion time and others about costs for implementing

their jobs. In the proposed method, for this reason, users
can measure weights for completion time and task

implementation cost (Wt and Wc) while introducing their

jobs. These are in the range [0,1] and the sum of the

weights is equal to 1. If Wc, for example, is 0.6, then users

are concerned about financial costs of task implementation

by %60, and about completion times by %40. Users

specify weight coefficients during operation. Wt and Wc

enable the users to get much more freedom to put their

jobs on the Grid. Therefore, given the above definitions, a

fitness function of a chromosome can be calculated by

Equation (8).

 (8)

Where Cost(α) and Budget represent total cost of solutions

and costs proposed by the user in the Grid scheduling

system to process all tasks, respectively. Makespan(α) is

the longest completion time of tasks among all system

resources in a chromosome, and MD shows the maximum

deadline for completing tasks. Ultimately, whatever a

chromosome has low merit, that chromosome has much

better merit.

3.2.4 Second Fitness Functions (Reliability)

As some chromosomes may be found where total schedule

lengths stay the same, so for the second fitness function,

one of the most reliable criteria for achieving the solution

will be investigated. In this step to calculate reliability for

each chromosome, records of resource fault occurrence are

maintained in a fault occurrence history table (FOHT) in

the grid information server [23]. At FOHT there is a row

with two cells for each resource. One of these cells

presents the history of fault occurred in that resource and

the other keeps the number of task execution by resource.

A part of FOHT in a given time is presented in Figure 6.

For example, this figure indicates the number of task

execution by R1 is 6700 but at two times of these

executions, fault occurred.

Fig.6 A part of FOHT in a given time

The application of this table allows a chromosome with a

low number of fault occurrences in its resources to have

the best chance of being selected. In order to evaluate the
fitness function of chromosomes, information from the

FOHT is used to improve the reliability and chromosomes

that are much lower in the total fault occurrences show the

most reliability for scheduling [23]. So we can define the

second fitness function as below:

 ∑
 []

 []

 (9)

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

26

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

In the proposed algorithm, a tournament operator is used

to select chromosomes, while a two-point crossover

operator is applied for intersect operation. In the mutation

stage, when a chromosome was selected through the
previous stage, a gene is randomly selected and the value

of its resource field is changed by a random number from

1 to m. The main purpose of this mutation is to replace the

task resource parameter so that it can be processed in

better resources. Figure 7 shows the application of the

mutation operator on a chromosome.

Fig.7 Example of application the mutation operator on a chromosome

In the final stage of running the genetic algorithm, because

it shows a poor performance for local searching, solutions

with similar total project duration are put on the GELS
algorithm so a neighboring solution could be generated for

them. Unlike other algorithms for the GELS algorithm, to

generate a neighbor solution from the current solution is

not completely random. Every current solution has a wide

range of neighbors deriving based on one particular

change in the current solution. It is called the change of

direction to the neighbor solution. All neighbors obtained

in this direction are only and only resulted from changes of

this type. In proposed method, Each gene of chromosome

is considered as a dimension of the problem. In fact the

problem’s dimensions are just the neighbouring solutions
which are obtained by changing the current solution. Initial

velocity is given to each of the problem’s dimensions that

is done randomly and ranges from 1 to the maximum of

the initial velocity[22].

Fig.8 Example of velocity vector in proposed algorithm

A neighbor solution for the current solution is a solution

where resource assigned to a particular task changes in the
relevant dimension. To do this, a given initial speed is

randomly assigned to each dimension of the solution. The

value ranges from 1 to the maximum initial speed. A gene

which have more velocity was selected and its values was

changed randomly with the number 1 to M. Figure 9, for

example, shows that for the first solution, the gene with

the highest speed is selected for which a neighbor solution

is generated.

Fig.9 Example of neighbor solution in proposed algorithm

3.3 Calculated Gravitation Force

After that, fitness amount is calculated using Equation 9. If

neighborhood solution is improved comparing to current

solution, it is substituted to its parent chromosomes in new

population. Nevertheless, it is not copied in new

population. Then, the amount of the force between
neighborhood solution and current solution is calculated

using Equation 9 and its amount is added to primary

velocity vector related to the dimension which the

neighborhood response is obtained from it until its primary

velocity vector is updated [22].

(10)

That in which Current_Solution and

neighborhood_Solution are the value of the current

solution and the neighborhood solution. G is equal to a

constant gravitational force 6.672 too; R is the radius of

the distance between two objects. Algorithm is finished

when the primary velocity equal to zero for all dimensions

or the number of algorithm iteration received to its
maximum number. Base on the given explanation the

pseudo-code of the search algorithm RHGGSA is shown

in figure 10.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

27

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig.10 pseudo-code algorithm RHGGSA

4. Experimental results

In this section, To show the out performance of the

proposed task scheduling algorithm, the obtained results
are compared with those of Min-Min, GA and GA-VNS.

The proposed RHGGSA algorithm for grid task

scheduling was implemented in C# programming language

on a Intel Pentium(R) 4 CPU 3.00GHz, 3GB machine

running under windows XP environment. The performance

of the proposed algorithm (RHGGSA) is evaluated

through conducting several simulation experiments under

different scenarios. Figure 11 summarizes the simulation

parameters. To evaluate the proposed algorithm, a set of

simulations is considered based on changes in the number

of user tasks, budgets payable by customers, and changes

in the range of task duration over 10 resources. In the first

experiment, the proposed algorithm and three alternative

scheduling algorithms are investigated with changes in
task numbers and a fixed budget.

Fig.11 used parameters to simulate algorithm RHGGSA

4.1 Scenario 1 (Effect of change in number of tasks
on makespan)

To improve the precision of the reported results, each

experiment is independently repeated 20 times and the

obtained results are averaged over these runs. In

simulation experiments, the efficiency of the proposed task

scheduling method is compared with the above mentioned
algorithms in terms of makespan and Cost. Figure 12

shows the average makespan of different algorithms. As it

can be seen, the proposed Grid task scheduling algorithm,

RHGGSA, significantly outperforms Min-Min, GA and

GA-VNS. yet another observable point is that an increase

in the number of tasks at the size of the problem results in

an increase in makespan for all algorithms.

Table 1: Average makespan of different algorithms under scenario 1

Average makespan No.

Of

Task RHGGSA GA-VNS GA Min-Min

32 36 48 41 50

67 72 95 85 100

89 95 121 115 150

127 133 172 158 200

Step 1: Initializing parameters

Step 2:
2.1. Generate the P number of random Chromosome with

lenght n.
2.2. Dimensioning (n)
2.3 Velocity_Vector[1..n] = Initial velocity for each
Dimension()
2.4. Set the parameter (Budget, MaxDeadline, neighbor
radius)
2.5. Setting the weights: Weight-Time (Wt) And Weight-
Cost (Wc) according to the user’s requirement.

Step 3:

Compute Cost(a) and Makespam(a) all chromosomes.

Step 4: Repeat
4.1. Evaluates all individuals in the population using
formula 8 and 9

4.2. Select the P/2 members of the combined population
based on minimum fitness, to make the population the next
generation.

4.3. Crossover
4.4. Mutation

Step 5: Selected chromosomes set as Current_Solutions and
make Neighbor_solutions with direction.

Step 6:
6.1. Direction = max(Velocity_Vector[…])
6.2. change the velocity_vector[index] of current_solution
with random integer between 1 and Max Velocity.

Step 7: Calculate gravitational force between
Current_solution and Neighbor_solutions using formula

Step 8: Update Velocity_Vector for each dimension by
gravitational force of chromosome.

until a terminating criterion is satisfied.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

28

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig.12 Effect of change in number of tasks on makespan

4.2 Scenario 2 (Effect of change Budget on
makespan)

In the second experiment, scheduling algorithms with the

time optimizing objective are compared by providing

various budgets. It can be seen that in all cases the

RHGGSA algorithm shows better performance than others

and that budget increases always reduce implementation

time. In fact, the higher the budgets given by the user, the
less the time needed to perform application tasks by

algorithms.

Table 2: Average makespan of different algorithms under scenario 2

Average makespan
Budget

RHGGSA GA-VNS GA Min-Min

127 133 172 169 50000
105 110 143 130 70000

87 92 121 117 90000

72 76 101 91 11000

61 67 87 81 13000

Fig.13 Effect of change Budget on makespan

4.3 Scenario 3 (Effect of heterogeneous tasks on

makespan)

In the third experiment, a comparison of scheduling

algorithms is done with different heterogeneous tasks.

Figure 14 shows the results obtained from scheduling

algorithms by the time optimization strategy. As seen,

changes in time associated with increased heterogeneity of

tasks reveal different trends for each algorithm. And with

increased heterogeneity, the RHGGSA algorithm could

achieve an acceptable decrease in calculation times.

Table 3: Average makespan of different algorithms under scenario 3

Average makespan No.

Of

Task RHGGSA GA-VNS GA Min-Min

185 170 353 268 [90...120]
165 155 235 233 [70...140]

147 146 218 202 [50...160]

130 135 201 185 [30...180]

122 128 185 165 [10...200]

Fig.14 Effect of heterogeneous tasks on makespan

5. Conclusion

The task scheduling problem in the distributed systems is

known to be NP-hard. In this paper, in addition to address
the concept of scheduling, proposing to combine genetic

and Gravitational Emulation Local Search (GELS)

Algorithms, benefits of both algorithms is used to solve

the scheduling problem. The algorithm minimizes the

execution cost and makespan of user tasks by a balancing

formula. We compared our algorithm with those of several

existing methods and evaluated the performance to the

changes in the number of tasks and cost of users. The

obtained results showed that the proposed algorithm

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

29

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

significantly outperforms Min-Min, GA and GA-VNS in

terms of makespan, cost. The proposed algorithm provides

more freedom to determine the importance of task time

and costs. And, by taking this into account, the algorithm

uses a weighted objective function. The objective function

of the algorithm proposed here, indeed, considers both
completion time and task implementation costs so the

resulting solutions would not exceed the deadline and

user's costs.

References

[1] Foster and C. Kesselman, "The Grid: Blueprint for a Future
Computing Infrastructure", Morgan Kaufmann Publishers,
USA, 1999.

[2] R. Zheng, H. Jin, "An Integrated Management and
Scheduling Scheme for Computational Grid", Grid and
Cooperative Computing, Lecture Notes in Computer Science
Volume 3033, 2004, pp 48-56.

[3] M. Shojafar, S. Barzegar, M. R. Meybodi, “A new Method on

Resource Scheduling in grid systems based on Hierarchical
Stochastic Petri net”, First International Conference on
Information, Networking and Automation (ICINA 2010),
China, 2010 Vol. 9, No 2,pp. V9-175-180.

[4] Abraham, R. Buyya and B. Nath, “Nature's Heuristics for
Scheduling Jobs on Computational Grids”, The 8th IEEE
International Conference on Advanced Computing and
Communications (ADCOM 2000), Cochin, India, 2000, pp.

45-52.
[5] Y. Gao, H.Q. Rong and J.Z. Huang, “Adaptive grid job

scheduling with genetic algorithms”, Future Generation
Computer Systems, Elsevier, 2005, pp.1510-161.

[6] J.E. Orosz and S.H. Jacobson, “Analysis of static simulated
annealing algorithm”, Journal of Optimization theory and
Applications, Springer, 115 (1), 2002 , pp. 165- 182.

[7] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.

Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen and R.
Freund, “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems”, J. of Parallel and
Distributed Computing, vol.61, No. 6, 2001, pp. 810-837.

[8] B. Barzegar, A.M. Rahmani, K. Zamani far, “Gravitational
Emulation Local Search Algorithm for Advanced
Reservation and Scheduling in Grid Systems”, First Asian

Himalayas International Conference on(2009), 2009, pp. 1-5.
[9] S. Zheng, W. Shu, L. Gao, "Task Scheduling Using Parallel

Genetic Simulated Annealing Algorithm", In: IEEE
International Conference on Service Operations and Logistics,
and Informatics, 2006, pp. 46–50.

[10]A. Tamilarasi, T. Anantha kumar, "An enhanced genetic
algorithm with simulated annealing for job-shop scheduling",
International Journal of Engineering, Science and
Technology, Vol. 2, No. 1, 2010, pp. 144- 151.

[11]Q. Tao, H. Chang, Y. Yi, ”A Grid Workflow Scheduling
Optimization Approach for e-Business Application”,
International Conference on E-Business and E-Government,
2010, pp. 168- 171. DOI:
http://dx.doi.org/10.1109/ICEE.2010.50

[12] Y. Hao, W. Huilin, Zh. Jiliu, "An Improved Genetic
Algorithm with Limited Iteration for Grid Scheduling", In:
Sixth International Conference on Grid and Cooperative
Computing. IEEE Computer Society, pp. (221-227), ISBN 0-
7695-2871-6, Washington, DC, USA.

[13] Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat,
"New Hybrid Algorithm for Task Scheduling in Grid
Computing to Decrease missed Task", World Academy of
Science, Engineering and Technology, 2011, pp. 79: 5-9.

[14] W. Abdulal, O.A. Jadaan,A. Ahmad Jabas, S.
Ramachandram. "Genetic algorithm for grid scheduling using
best rank power", In: IEEE Nature & Biologically Inspired
Computing (NaBIC 2009), December 2009, pp. 181-186,

IEEE, ISBN 978-1-4244-5053-4, Coimbatore, India.
[15] W. Abdulal, S. Ramachandram, "Reliability-Aware Genetic

Scheduling Algorithm in Grid Environment", In: IEEE
International Conference on Communication Systems and
Network Technologies, June 2011, pp. 673-677, IEEE, ISBN
978-0-7695-4437-3/11, Katra, Jammu, India.

[16] X. Xue,Y. Gu, "Global optimization based on hybrid clonal
selection genetic algorithm for task scheduling", 2010, J

Comput Inf Syst 6(1):253–261
[17] S. Garg, P. Konugurthi, R. Buyya, "A linear programming

driven genetic algorithm for meta-scheduling on utility grids",
In: 16th International Conference on Advanced Computing
and Communications, Chennai, India, 2008, pp. 19-26.

[18] S. Garg, R. Buyya,H.J. Siegel, " Time and cost trade-off
management for scheduling parallel applications on utility
grids", Future Generation Computer Systems 2010; 26(8):

1344–1355.
[19] A.Y. Zomaya, R.C. Lee, S. Olariu, "An introduction to

genetic-based scheduling in parallel-processor systems". In:
Zomaya, A.Y., Ercal, F., Olariu, S. (eds.) Solutions to
Parallel and Distributed Computing Problems - Lessons from
Biological Science, Wiley, New York, 2001, pp. 111–133.

[20] Voudouris, chris, Edward Tsang, Guided Local Search.
Technical Report CSM-247, Department of Computer
Science, University of Essex, UK, August 1995.

[21] Barry Lynn Webster, “Solving Combinatorial Optimization
Problems Using a New Algorithm Based on Gravitational
Attraction”, Ph.D. Thesis, Florida Institute of Technology
Melbourne, FL, USA, May 2004.DOI:
http://dx.doi.org/10.1109/T-C.1973.223690

 [22] B. Barzegar, A. Rahmani, K. Zamani far, "Advanced
Reservation and Scheduling in Grid Computing Systems by
Gravitational Emulation Local Search Algorithm", American

Journal of Scientific Research, No. 18, 2011, pp. 62-70.
[23] L. Mohammad Khanli, M. Etminan Far, and A.M. Rahmani,

“RFOH: a New Fault Tolerant Job Scheduler in Grid
Computing”, The 2nd International Conference on Computer
Engineering and Applications (ICCEA), Bali Island,
Indonesia, March 19-21, 2010.

Vahid, GhaedRahmati received the B.Sc degree in Computer
Engineering (Software) from Islamic Azad University, Mahshahr
Branch. He is currently M.Sc. student in Computer Engineering
(Software) in Islamic Azad University Science and Research
Branch of Ahvaz, Iran. His research interests include grid
computing, task scheduling algorithms, wireless sensor networks
and cloud computing.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

30

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Seyed.Enayatallah, Alavi B.S. Computer Eng. From Isfahan
University of Technology 1993 Isfahan, Iran, M.S. in Computer
Eng. Shiraz University 1996 Shiraz, Iran, Ph. D. in Computer Eng.,
BNTU 2011Minsk,belarous, assistant Pro. At ShahidChamran Uni.
Research interests includes Image processing, and neural
network. More than 30 papers.

Iman, Attarzadeh received his M.Sc. in Computer Architecture
from Islamic Azad University, Tehran, Iran, in 2005. he was the
Head of Department of Computer Science at the University in
2005. His current research interests include software engineering
(project management, formal method, algorithm design, and
embedded systems), soft computing theories and techniques,
image processing, and computer Architecture. More than 30
papers.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

31

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

