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Abstract 
In this paper we introduce two new approaches to predict the 

grades that university students will acquire in the final exam of a 

course and improve the obtained result on some features 

extracted from logged data in an educational web-based system. 

First we start with a new approach based on Fuzzy non-

parametric regression; next, we introduce a simple algorithm 

using ReliefF estimated weights. The first prediction technique is 

yielded by integrating ridge regression learning algorithm in the 

Lagrangian dual space. In this approach, the distance measure for 

fuzzy numbers that suggested by Diamond is used and the local 

linear smoothing technique with the cross validation procedure 

for selecting the optimal value of the smoothing parameter is 

fuzzified to fit the presented model. Second approach is based on 

ReliefF attribute estimation as a weighting vector to find the best 

adjusted results. Finally, to check the efficiency of the new 

proposed approaches, the most popular techniques of traditional 

data mining methods are compared with the presented methods. 

Keywords: Educational Data Mining, Predicting Marks, Fuzzy 

Non-parametric Regression, KDD, ReliefF, WEKA, Matlab 

1. Introduction 

Globally the application of data mining [25] in education 
is great. Educational data mining (also known as EDM) is 
a type of knowledge discovery science and focused on the 
development of techniques for making discoveries within 
the unique types of data that gathered from educational 
environments, and using those methods to understand 
efficaciously the students and help them to learn better and 

potentially ameliorate some aspect of educations. These 
data can be extracted from a number of sophisticated web-
based learning and course management tools called 
Virtual Learning Systems (VLSs) such as Moodle, eFront, 
ATutor and many others, include among other features 
such as course content delivery features, assignment 
submission, online conferences, quiz modules, grade 
reporting system and log books [1].  
Educational Data Mining can be used in many aspects of 
education, from students, to instructors, as well as staff to 
improve teaching/learning process and make better 
decisions about educational activities. Hence, the 
prediction of student performance with high accuracy is 
useful in many contexts in all educational institutions for 
identifying slow learners and distinguishing students with 
low academic achievement or weak students who are 
likely to have low academic achievements.  
The increase of transactional educational systems as well 
as rich databases of student information has created large 
repositories of valued data reflecting how students learn. 
On the other hand, the use of internet in education has 
created a new context known as e-learning or web-based 
education in which large amounts of information about 
teaching/learning interactions are endlessly generated and 
ubiquitously available. All this information provides a 
gold mine of educational data [2] and also makes some 
challenges for researchers for a long time. 
In this paper we have presented two new approaches. First 
we introduced a novel approach based on fuzzy non-
parametric regression by integrating ridge-type 
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regularization in the Lagrangian dual space and using 
Gaussian kernel as well as smoothing parameter, all 
together to reach the accurate prediction. And second 
approach introduced an algorithm to integrate a ReliefF 
weighting criteria as a weighting vector to find the 
adjusted result. In both presented proposals, with 
discovering of dataset composed of crisp inputs, we can 
infer a single aspect of data (student marks) from some 
combination of other aspects of data (such as online 
quizzes). 
In the next section, we summarize the related work. The 
proposed statistical approach includes concepts and 
applied methods introduced in section 3. Section 4 
introduces of integrating ReliefF weighting criteria as a 
weighting vector to use in prediction. Section 5 introduces 
the case study and the data in this study carried out. 
Section 6 reports on and compares experimental results for 
all algorithms tested. Finally, Section 7 concludes the 
paper. 

2. Related work 

In last decades, many studies around the determining of 
students’ performance have been performed. Many 
statisticians have tried to predict and examine the 
outcomes [3] and many educational psychologists have 
tried to understand and explain the issue [4]. 
Also with the widespread accessibility of the World Wide 
Web services and evidence of e-learning solutions many 
technological approaches have been emerged. Naeimeh 
Delavari et al. [5], proposed a model with different types 
of education-related guidelines and the data mining 
techniques appropriate for dealing with large amounts of 
generated data in higher learning institutions. Luan et al. 
[6], express an instance of a specific case study of 
clustering students with similar characteristics. Zafra and 
Ventura [7] proposed an innovative technique based on 
multi-objective grammar guided genetic programming to 
detect the most relevant activities that a student needs to 
pass a course in virtual learning environment. Chanchary 
et al. [8], analyze student logs belong to a learning 
management system with data mining and statistical tools 
to discover relationships between student’s access 
behavior and overall performance. Fausett and Elwasif [9], 
predict student’s grades (classified in five classes: A, B, C, 
D and E or F) from test scores using neural networks. 

Martnínez [10], predicts student academic success (classes 
that are successful or not) using discriminant function 
analysis. Minaei Bidgoli and Punch [11], classify students 
by using genetic algorithms to predict their final grades. 
Kotsiantis and Pintelas [12], predict a student’s marks 
(pass and fail classes) using regression techniques for the 
students at Hellenic Open University. Romero et al. [13] 
show how web usage mining can apply in e-learning 
systems in order to predict the final marks and Amelia 
Zafra, et al. [14] presented a multiple instance learning for 
classifying students for data in Cordoba University. 
As a valued reference, Romero and Ventura [15] provided 
a survey which contains a categorized review of the main 
research studies using educational data mining techniques 
in the virtual learning environments.   

3. First Approach: Fuzzy Non-parametric 
Regression methods 

Generally there are two ways to develop a fuzzy 
regression model: (1) models where the relationship of the 
variables are fuzzy; and (2) models where the variables 
themselves are fuzzy. In order to formulation the problem, 
we focus on models, in which the data and relationship 
between variables are fuzzy. 
Although many practical situations has implemented using 
parametric forms of fuzzy regression, large datasets with a 
complicated underlying variation trend, that used fuzzy 
parametric regression, may have produce unrealistic 
outcomes. Hence, some other approaches have been 
developed to deal with the fuzzy non-parametric 
regression problems; such as Ishibuchi and Tanaka [16], 
that integrated several fuzzy non-parametric regression 
techniques with traditional back-propagation networks and 
Cheng and Lee [17], have applied the radial basis function 
in fuzzified neural networks. Also with respect of 
significant development of statistical non-parametric 
smoothing methods, integrating smoothing techniques into 
non-parametric regression problems lead to achieve the 
better prediction. 
In this study, we concentrate on ridge regression method, 
which integrated with non-parametric local linear 
smoothing (LLS), that is a special case of the local 
polynomial smoothing technique, which is fuzzified to 
handle fuzzy non-parametric regression with triangular 
fuzzy numbers based on the distance measure proposed by 
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Diamond [18]. Figure 1 shows a representation of 
triangular fuzzy number. A distance based on cross 
validation procedure for selecting the optimal value of the 
smoothing parameter is also suggested. 

 

 

Fig. 1 A triangular fuzzy number M 

In the rest of the study first explain the basic concepts of 
triangular fuzzy numbers and the local linear smoothing 
method. Next fuzzy ridge non-parametric regression 
model will be presented. Then appropriate kernel function 
and the smoothing parameter have been determined. 

3.1 Basic concepts 

As described later, this section is focused on fuzzy non-
parametric regression model with multiple crisp input and 
triangular fuzzy output. In this section, based on local 
linear smoothing approach, a fitting procedure is proposed 
for this model. 
Assume a = (m − α  , m , m +  β  ) be a triangular 
fuzzy number with its left, center, and right spread being. 
The membership function of a is:  

μ =  ⎩⎪⎨
⎪⎧ t − (m − α )α    if m − α ≤ t <  m m +  β − t β       if m ≤ t <  m +  β 0                               otherwise                           (1) 

In this paper we point to the space of all fuzzy triangular 
numbers by T(R), i.e.:  (R) = {a: a = (m − α , m , m + β )}                       (2) 
Now, look at the following multi variable fuzzy non-
parametric regression model: Y = F(x){+}ε =  m(x) − α(x), m(x), m(x) + β(x) {+}ε 

(3) 
In this model, x = (x , x , … , x ) is a p-dimensional crisp 
independent variable (input) where, its domain is assumed 
to be D ⊆ R ; also Y ⊆ T(R) is a triangular fuzzy 

dependent variable (output). F(x), a mapping from D to T(R), is an unknown fuzzy regression function with its 
center, lower and upper limits being respectively m(x), l(x) = m(x) − α(x) and r(x) = m(x) + β(x). Moreover ε 
is an error term. Instead of being solely regarded as a 
random error with mean zero, ε may also be considered as 
a fuzzy error or a hybrid error containing both fuzzy and 
random components. {+} is an operator whose definition 
depends on the fuzzy ranking method used. 

3.2 Local Linear Smoothing Method 

Let (x , Y )| x ∈ R , i = 1,2,3, … , n be a sample of the 
observed crisp inputs and triangular fuzzy outputs of 
model (1) with the underlying fuzzy regression function: F(x) = (l(x), m(x), r(x)). The main object in fuzzy non-
parametric regression is to estimate F(x) at any x ∈ D ⊆R  based on (x , Y ), i = 1,2, … , n. As pointed out by Kim 
and Bishu [19], the membership function of an estimated 
fuzzy output should be as close as possible to the 
corresponding observed fuzzy number. From this point of 
view, we shall estimate m(x), l(x) and r(x) for each x ∈ D 
in the sense of best fit with respect to some distances that 
can measure the closeness between the membership 
functions of the estimated fuzzy output and the 
corresponding observed one. Suppose that m(x), l(x) and r(x) have continues partial derivatives with respect to 
each component x  in the domain D of x. Then, for a given x = (x  , x  , … , x  ) ∈ D  and with Taylor’s expansion, m(x), l(x) and r(x) can be locally approximated in a 
neighborhood of x , respectively by the following linear 
functions:  

⎩⎪⎪
⎨⎪
⎪⎧ l(x) ≈ l (x) = l(x ) + l(  )(x )(x − x  ) +… + l(  )(x ) x − x   ,m(x) ≈ m (x) = m(x ) + m(  )(x )(x − x  ) +… + m(  )(x ) x − x   ,      r(x) ≈ r (x) = r(x ) + r(  )(x )(x − x  ) +… + r(  )(x ) x − x   ,       

 

(4) 
Where l    (x ), m    (x ), and r    (x ), j = 1,2,3, … , p 
are respectively the derivatives of m(x), l(x) and r(x) 
with respect to x  at x . 
Let a = (l , m , r ) and b = (l , m , r ), m , r , m , r ≥0 be any two triangular numbers in T(R). Diamond 
defined a distance between a and b as follows: d(a, b) = (l − l ) + (m − m ) + (r − r )          (5) 
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The distance (5) measures the closeness between the 
membership functions of two triangular fuzzy numbers. 
We henceforth based on this distance we can extend the 
local linear smoothing technique to fit the fuzzy non-
parametric model (1). With the observed data  (x , Y ) =  x  , … , x  ,  l  , m  , r    ( ) , i = 1,2,3, … , n      (6) 
and based on Diamond’s distance (5), the following 
locally weighted least-squares is formulated. That is            d   l  , m  , r    ( ),  l (x ), m (x ), r (x )  ( )      

K (‖x − x ‖) =   l  − l(x )    − l    (x ) x  − x         K (‖x − x ‖) +  m  − m(x )    − m    (x ) x      − x     K (‖x − x ‖) 

+  r  − r(x )    − r    (x ) x  − x         K (‖x − x ‖) (7) 
With respect to m(x ), l(x ), r(x ) and l    (x ), m    (x ), r    (x ), j = 1,2,3, … , p for the given kernel K (. ) and smoothing parameter h,  

K (‖x − x ‖) = K  ‖x − x ‖h  h , i = 1,2,3, … , n       (8) 

are a sequence of weights at x  whose role is to make the 
data that are close to x  contribute more in estimating the 
parameters at x  than those that are farther away with the 
adjustment of h. By solving this weighted least-squares 
problem, we can obtain not only the estimates of m(x ),l(x ) and r(x ) at x , but also those of their respective 

derivatives l    (x ), m    (x ), r    (x ), j = 1,2,3, … , p. 
Since we mainly focus on estimating the underlying fuzzy 
non-parametric regression function  

F(x) =  l(x), m(x), r(x)  at x .     (9) 
It is natural to take the solutions of m(x ), l(x ) and r(x ) 
in equation (7), denoted, respectively by m (x ), l (x ) and r (x ) as the estimates of the centre, the lower and the 
upper spread of F(x) at x . That is the estimate of F(x) at x : F (x) =    ( ),  ( ),  ̂( ) 

=    (  ) −   (  ),  ((  ),  (  )
−   (  )                                            (10) 

According to the principle of the weighted least-squares 
and by utilizing matrix notations, we can immediately 
obtain   l (x ), l (  )(x ), … , l     (x )  
=  X (x )W(x ; h)X(x )   X (x )W(x ; h)L  

 m (x ), m (  )(x ), … , m     (x )  
=   X (x )W(x ; h)X(x )   X (x )W(x ; h)M  

 r (x ), r (  )(x ), … , r     (x )  
=   X (x )W(x ; h)X(x )   X (x )W(x ; h)R    (11) 

Where 
X(x ) = ⎣⎢⎢

⎡1 x  − x  … x  − x  1 x  − x  … x  − x  ⋮ ⋮1 x  − x  … x  − x  ⎦⎥⎥
⎤
 

, L = ⎣⎢⎢
⎡l  l  ⋮l  ⎦⎥⎥

⎤ , M =  m  m  ⋮m    , R =  r  r  ⋮r     
and W(x ; h) = diag K (‖x − x ‖)K (‖x − x ‖), … , K (‖x − x ‖) . 

      (12) 
Thus, the estimated fuzzy regression function is F (x ) =  l (x ), m (x ), r (x )  ( )=  e  H(x ; h)L , e  H(x ; h)M , e  H(x ; h)R   

(13) 
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where H(x ; h) =  X (x )W(x ; h)X(x )   X (x )W(x ; h) 

(14) 
and e = (1,0, … ,0) , a (p+1)-dimensional vector with the 
first element being unity and the others being zero. 

3.3 Fuzzy ridge nonparametric regression model 

In most cases, due to multi co-linearity among 
independent variables, either the matrix  X (x )W(x ; h)X(x ) , is a singular matrix or it is very 
close to a singular matrix. In this paper, we use ridge 
regression to overcome this problem. Ridge regression 
gives computational efficiency in finding solutions of 
fuzzy regression models particularly for multi variable 
cases. In this case if we denote Θ, M, W, W  and N by Θ = (θ  , … , θ  , θ  , … , θ  , θ  , … , θ  ) ,            M = (M  , … , M  , M  − α  , … , M  − α  , M  + β  , … , M  + β  ) ,                W = W(x ; h) = diag K (‖x − x ‖), K (‖x − x ‖), … , K (‖x − x ‖) ,        

(15) 

W =  W 0 00 W 00 0 W   and N =  WQ 0 00 WQ 00 0 WQ   

Where Q is a n × n matrix of Q  =< x , x > and 0 is the n × n zero matrix. We have: Θ = 2λ(N + λI)  W M.    (16) 

3.4 Selecting the kernel function and adjust 
smoothing parameter 

After we use the above procedure to fit the fuzzy ridge 
non-parametric regression model (1), the regularization 
parameter λ, the Kernel K(. ) and the smoothing parameter h in the weight K (. ) should be determined first. As 
discussed later the role of weights K(‖x − x ‖), i =1,2,3, … , n is to make the data that are close to the given 
point x  contribute more to estimate F (x) than those that 
are farther away. There are many types of kernel 
functions. In this study, we used Gaussian kernel  K(x) =  √  exp  −     .     (17) 

Smoothing parameter h in the weight K (. ) is used to 
adjust the smoothness of the estimates l (x), m (x), and r (x). Therefore, the proper selection of the smoothing 

parameter value is the important key point in the local 
smoothing techniques. There are a few approaches to 
selecting the optimal value of the smoothing parameter for 
the above local linear smoothing method, such as 
Bayesian and bootstrap, cross-validation and generalized 
cross-validation [20-22]. In this paper, a distance based on 
Diamond [18] to describe a fuzzified cross-validation 
procedure can be used and described as follows. Let F ( )(X ; h) =  l ( )(X ; h), m ( )(X ; h), r ( )(X ; h)  ( )    (18) 

be a predicted fuzzy ridge non-parametric regression 
function at input X  computed by equation (13) with the 
smoothing parameter h. In this paper we use the following 
error evaluation criterion that we named it as CV (Cross-
validation). In practice, to reach the optimal value of h 
closely depends on the degree of smoothness of the 
regression function we have to compute for a series of 
values of h to obtain h0. Afterward, we reach the most 
minimum value of proposed CV based on h0.    

CV(h) =  1n   d  Y , F  (x , h)       

=  1n    l  − l  (x ; h)  + m  − m  (x ; h)  +  r  − r  (x ; h)        

(19) 

4. ReliefF-based algorithm 

Beside the presented approach in section 3, in this paper 
we also introduce a simple but robust solution to achieve a 
good prediction. In the rest of the article we utilize the 
ReliefF weighting criteria as follows.  

4.1 ReliefF basic concepts 

ReliefF is an improved algorithm and more robust one, 
which can be used with incomplete and noisy data [23]. A 
key idea of the ReliefF algorithm is to estimate the quality 
of attributes (predictors) for input data and response a 
weighting vector for classification or regression with K 
nearest neighbors. Weight vector, is consisting of attribute 
weights ranging from [-1..1] with large positive weights 
assigned to important attributes. Attribute weights 
computed by ReliefF usually depend on accurate selection 
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of K nearest neighbors. User-defined parameter k controls 
the locality of the estimates. In most proposes, this 
parameter can start with 10, so in the presented algorithm 
it can be safely set to 10 too. 

4.2 Proposed Algorithm 

In algorithm 1 the pseudo code of the presented approach 
has been provided. Vector W is consisted of ReliefF 
weighting factors (line 4) and utilize with a metric element 
to make a metric vector called S (lines 5, 6, 7). Finally the 
index of minimum value in vector S is mapped to a class 
position in training set and its value returned as outcome 
(lines 8, 9, 10). 

Algorithm 1 proposed ReliefF-based Algorithm 

1. set all weightsW[A] = 0.0; 

2. set C1 = count(TestingSet);  

3. set C2 = count(TrainingSet); 

/* Estimate attributes weight and make weighting 

vector W */ 

4. W[A] = ReliefF(TrainingSet, k) 

5. for i = 1 to C1 do begin 

6.         for j = 1 to C2 do begin 

7.                 [ ]  =  ∑( [  ] × |       _ ( ) −           _ ( )|); 

 /* find the minimum value in Set with its 

position */ 

8. value = minimum(Set); 

9. position = indexvalue; 

10. return(TrainingSet_Class[position]); 

11. end; 

5. Case study 

This study employs actual training and testing datasets 
exported to CSV format with totally 108 records from 
students in Damghan University during an academic year 
from September to June in machine learning course using 
the Moodle platform [1]. This platform can store some 
specific tasks carried out by the students during an 
academic year, just before the Final Examinations. In 
order to collect information, each user in the system is 
assigned an identifier and every time he/she logs onto the 
framework, all movements within a particular course are 
stored with respect to his/her access to content and tools 
(e.g. calendar, discussion forum, email archive, chat, 
quizzing, and assignments) [24]. In our work, both the 
information about four quizzes that taken from students 
along the semester as well as final marks obtained in this 
course, are considered. 

6. Experimentation and results 

This section discusses the experimental results. First 
section provides the results of the traditional algorithms as 
shown in table 1. And second section provides the 
performance of our proposal that is provided in table 2. 

6.1 Experimental results of traditional algorithms 

The purpose of the experimentation is to show that 
proposed approaches improve the efficiency and 
effectiveness of the classical representation, in predict 
student’s grades. Thus, first a comparative study is carried 
out between the most applicable algorithms and then the 
presented proposal is evaluated for solving the same 

Fig. 2 Prediction accuracy of testing data in FNPreg, RMSE= 0.0031, Accuracy= 0.994 
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problem. In order to hold all experiments in the same 
conditions, each of them using 10-fold stratified cross-
validation, and they are reported in this section. To 
compare the proposed approach we consider some popular 
paradigms that have shown good results in other 
applications.  
Table 1 report Root Mean Squared Error and accuracy 
using R2 criterion for the measurements for all algorithms 
employed in this study. 

Table 1  Experimental results of traditional methods 

Algorithms Accuracy RMSE 

Algorithms based on rules 

M5Rules 0.7066 1.4709 

Bagging 0.7049 1.4481 

DecisionTable  0.5662 1.6357  

ConjunctiveRule  0.3974 1.7529  

Algorithms based on decision tree 

M5P 0.7066 1.4709 

RepTree 0.4694 1.6965 

DecisionStump 0.3046 1.9544 

Algorithms based on regression 

PaceRegression 0.7200 1.4635 

LinearRegression 0.7066 1.4709 

SMOreg 0.6865 1.3402 

SimpleLinearRegression 0.6398 1.6088 

LeastMedianSquared 0.6383 1.9360 

IsotonicRegression 0.5662 1.6140 

AdditiveRegression 0.5029 1.6572 

Algorithm based on Neural Network 

GuassianProcess 0.7628 1.4188 

MultilayerPerceptron 0.6961 1.7692 

RBFNetwork 0.5722 1.6211 

6.2 Results obtained using our proposals 

In this section we discuss the performance achieved by our 
proposal. Number of records is chosen to be 30 percent 
randomly chosen as testing set and number of running 
algorithms are about over 25 times. Results of two 
proposed algorithms are shown as follows: 

• Fuzzy nonparametric regression  
CV outcomes for some smoothing argument (ℎ) 
and regularization parameter ( ) is adjusted and 
best value is computed around ℎ = 0.128 and  = 0.0002. Figure 2 shows the prediction 
results for randomly 30 percent samples as fuzzy 
triangular final grades. At a glance, the accuracy 
of the prediction is clearly seen and it can be 
shown that the presented approach returns values 
much nearest to the actual ones beside traditional 
presented algorithms.  

• ReliefF-based algorithm 
Figure 4 shows the prediction diagram for 30 
percent randomly chooses. And figure 5 shows 
the accuracy of the presented algorithm using R2 
criterion. 

 

Fig. 4  Prediction accuracy of fuzzy non-parametric regression (FNPreg) 

R² = 0.994

0

2

4

6

8

10

0 5 10

FNPReg

Linear
(FNPReg)

Fig. 3  Prediction accuracy of testing data in ReliefF-based algorithm, RMSE= 0.6236, Accuracy= 0.9075 
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In the following, table 2 shows the accuracy and root 
mean squared error (RMSE) provided by each proposed 
algorithm of testing datasets. The values indicates that the 
proposed models completely overcome all traditional 
algorithms and make much more accurate prediction.  
 

 

Fig. 5  Prediction accuracy of ReliefF-based algorithm 

Table 2  Results obtained using our proposals 

Algorithms Accuracy RMSE 

Fuzzy non-parametric regression  0.9940 0.0031  

ReliefF-based  0.9075 0.6236 

7. Conclusion and future work 

To achieve more accuracy in prediction process in 
educational environments, two new proposals based on 
statistical approach were presented. First we introduced a 
novel approach based on fuzzy non-parametric regression 
by integrating ridge-type regularization in the Lagrangian 
dual space and using Gaussian kernel as well as smoothing 
parameter, all together to fit the presented model. Second 
we integrate ReliefF weighting algorithm as a weighting 
vector in the proposed algorithm. Computational 
experiments show that when the problem is regarded as 
fuzzy non-parametric regression or ReliefF-based 
algorithm, performance is significantly better and the 
weakness of all other traditional proposed algorithms is 
overcome. 

Although the results are so interesting, there are still 
quite a few considerations that could surely add even more 
value to results obtained. As considered later this study is 
concentrated only on crisp inputs such as online students’ 
quizzes marks, to predict final grades, so it would be 
interesting to design a method to apply desirable 

categorical variables together. Another interesting work is 
implementing a method with integrating ridge-type 
regularization in fuzzy nonlinear regression, in which it 
can be so more value to the work. 
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