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Abstract
Among the various forms of malware, botnets are becoming the
major threats on the Internet that use for many attacks, such as 
spam, distributed denial-of-service (DDoS), identity theft and 
phishing. NetFlow protocol is a standard for monitoring Internet 
traffic that developed by Cisco Systems. Therefore, it is very 
effective to identifying unusual programs generating illegal 
traffic, or additional load, and also identification of botnet. The 
main goal of this paper is to show a novel approach for botnet 
detection using data records of NetFlow protocol and clustering 
technique. Our approach for C&C bot detection is to examine 
flow characteristics such as IP, port, packet event times and 
bytes per packet for evidence of botnet activity. First we collect 
the flows and refined records based on basic filtering, white list 
and black list. The remaining records produce a cluster and the 
cluster refined based on patterns, policies, and another cluster 
that generated based on reported events, alerts and activities of 
network security sensors. We apply hierarchical clustering that
allows us to build a dendrogram, i.e., a tree like graph that 
encodes the relationships among the bots. The merged cluster
modifies based on rules and combined with other information 
about detected infected nodes to reduce false positive. 

Keywords: NetFlow Protocol, C&C Botnet, Hierarchical
Clustering, Correlation, Anomaly Detection, Network Security.

1. Introduction

The term “Bot” is derived from the word “Robot” that is 
an intelligent software application that runs via worms, 
trojans or other malicious codes to perform a group of
cyber operations over the Internet. The other name of bot 
is zombie. A large number of bots form a connected group 
called a “Botnet” that under the remote control of a 
human operator called a “Botmaster”. 
According to the explanation in [1], botnets can be 
classified to four categories: IRC, HTTP, P2P and DNS. 
The IRC bot is a centralized topology that a central point 

sends messages between clients [2]. In connection phase, 
the bot program establishes an IRC channel, and connects 
the zombie to the command and control (C&C) server. 
Upon establishment of C&C channel, the zombie becomes 
a part of attacker’s botnet army. Then, the actual botnet 
command and control activities will be started. The 
botmaster uses the IRC channel to disseminate commands 
to his bot army. Bots receive and execute commands sent 
by botmaster. The IRC channel enables the botmaster to 
remotely control the action of large number of bots to 
conduct various illicit activities [3]. 
In the http bot, the command and control (C&C) is http 
based [1]. In HTTP-based botnets, bots contact C&C 
server periodically to fetch commands. The HTTP 
protocol is a popular communication method by botnet 
which is difficult to be detected. Botnets usually bypass 
security devices using the HTTP protocol [4].
Centralized control of botnets offers a single point of 
failure for the botnet. So, more stable architectures will be 
used by botnet operators, P2P architecture [1]. P2P 
communication system has several important advantages 
over centralized networks. It is much harder to disrupt 
and the design of P2P systems are more complex. This 
means that the compromise of a single bot does not 
necessarily mean the loss of the entire botnet. But, there 
are typically no guarantees on message delivery or latency 
[2]. 
When bots used DNS as a communication channel to 
connect to botmaster, called the DNS botnets. Recent 
DNS botnets are so difficult to be detected, because using 
new fluxing features. Fast flux (FF), a mechanism that a 
set of IP addresses change frequently corresponding to a 
unique domain name. Domain flux (DF), a mechanism 
that a set of domain names are generated automatically 
and periodically corresponding to a unique IP address [5]. 
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Botnet detection and defense is an important research 
task. There are mainly many categories of botnet detection 
and tracking methods. The detection techniques are 
classified into four classes in [3]: signature-based, 
anomaly-based, Domain Name System (DNS)-based and 
mining-based techniques. 
According to [4], there are two approaches of botnet 
detection, one is signatures based method and the other is 
based on anomaly. In [6], detection methods are traffic 
based, anomaly based, nick name based, independent of 
C&C controls and spam mail based.
In this research, the main data-source for botnet detection 
is NetFlow records. NetFlow protocol has the task of 
network traffic analysis and plays a vital role in network 
troubleshooting, performance improvement and increased 
availability of members. The protocol stores information 
about network nature, such as who, when and how has
used network traffic. In last, the SNMP protocol used for 
monitoring network traffic. SNMP however aggregates 
information on a very high level (i.e. network interface 
throughput or device uptime), but, a lot of information is 
lost. The SNMP protocol can't specify that who and how 
much has used bandwidth. So, the NetFlow protocol 
designed for collects information of network layer [7]. 
A flow is a unidirectional stream of packets that pass 
through a network element and share a common set of 
attributes [8]. NetFlow version 9 is the latest release from 
Cisco and was also selected by the IETF as the basis for 
the IPFIX standard. NetFlow protocol is useful in 
identification of agents producing an additional load to 
the network. Therefore it is very effective in identifying 
unusual programs such as botnet. 
Several mechanisms have been proposed for botnet 
detection; One of these mechanisms, uses NetFlow 
protocol. Low volume of data, simplicity of computation, 
lower false positive and being online are some of the 
advantages of this mechanism against other mechanisms. 
Network flow records high-level descriptions of Internet 
connections, but not the actual data transferred [9]. 
Various methods are used to analyze NetFlow data. One 
of these methods is clustering. Bots have a specific traffic 
pattern to communicate over the network, like ports, size 
of the packets in each direction, and duration. So, if 
various data mining techniques combined with clustering 
analysis, specific patterns of behavior in network traffic 
are identified and can be found bots. 
We proposed a method for C&C bot detection that 
contains 5 steps: First, we collect network traffic and 
events. Second, records refine based on basic filtering, 
white list and black list. Third, we use clustering 
technique to create two clusters of remaining flows and 
events. Forth, we refine the flows cluster based on 
patterns, policies, and events cluster. In last step, we use 

rules and pervious information to discover correlations 
and certain patterns, and report the bot cluster(s). 
The remainder of this paper is structured as follows. 
Section 2 discusses on related work, defines the scope of 
this article and highlights innovative aspects of our 
approach. In section 3, the general methodology as well as 
proposed approach is described. Finally, we offer the 
simulation of our approach in section 4 and conclude in 
section 5.

2. Related Work

Botnet detection and tracking has been a major research 
topic in recent years. Different solutions have been 
proposed in different sources. Traditionally, botnets have 
mainly been identified in several ways. According to the 
explanation in [3], botnet detection techniques can be 
classified as being signature-based, anomaly-based, DNS-
based, and mining-based. Several of the prevalent data 
types that used for botnet detection and tracking have 
DNS data, NetFlow data, packet tap data, address 
allocation data, honeypot data and host data [2]. 
According to [10], bot detection mechanisms contain 
infiltration, C&C server hijack, syntactic, horizontal 
correlation, vertical correlation, host-based and network-
based. An addition, botmaster detection mechanisms 
contain marking, logging and stepping-stone detection 
that explained in [10]. 
In this paper, data source is NetFlow data. NetFlow is a 
traffic profile monitoring technology developed by Darren 
Kerr and Barry Bruins at Cisco Systems, back in 1996. 
NetFlow data provides important information about 
network conversations and behaviors. Each unique flow is 
recorded by the network devices or probes, and the flows 
are then reported to a data collection server [11]. NetFlow 
can help network managers to monitor suspect Internet 
botnet’s activities by analyzing the source data from the 
router [12]. NetFlow data represents information gathered 
from the network by sampling traffic flows and obtaining 
information regarding source and destination IP addresses 
and port numbers [13].
A survey that aims at analyzing, classifying and 
comparing the most relevant network-based botnet 
detection methods, can see in [14]. Generally, botnet 
detection methods using NetFlow are classified in five
categories: correlation, clustering, IRC, machine learning 
and DNS. 
Correlation: Disclosure, a large-scale, wide-area botnet 
detection system incorporates a combination of novel 
techniques to overcome the challenges imposed by the use 
of NetFlow data. Several groups of features allow 
Disclosure to reliably distinguish C&C channels from 
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benign traffic using NetFlow records [15]. BotHunter that 
explained in [16], is analytical strategy of matching the 
dialog flows between internal assets and the broader 
Internet as dialog-based correlation, and contrast this 
strategy to other intrusion detection and alert correlation 
methods. A same approach presented for C&C bot, in [17].
Clustering: in this approach, a clustering scheme with a 
set of traffic features design to determine group similar 
traffic patterns. BotMiner defines a botnet as a 
coordinated group of malware instances that are 
controlled via C&C communication channels. In 
BotMiner, detection framework clusters similar 
communication traffic and similar malicious traffic, and 
performs cross cluster correlation to identify the hosts that 
share both similar communication patterns and similar 
malicious activity patterns [18]. BotTrack is an approach 
based on clustering and PageRank algorithm that analyzes
communication behavioral patterns and to infer potential 
botnet activities [19]. An approach proposed based on 
PageRank and MapReduce in [20].
IRC: Internet Relay Chat (IRC) is a concept that allows 
users to communicate with each other in real time. There 
exist several separate networks of so called IRC servers, 
which provide users with a connection to IRC. A common 
method of an attacker to communicate with the botnet is 
to use IRC. Rishi is an approach to detect IRC 
characteristics of infected machines that explained in 
[21]. There are more methods for detect IRC bot that 
explained in [22], [23], [24] and [25].
Machine Learning: Reference [26] uses machine 
learning techniques to identify the command and control 
traffic of IRC-based botnets. 
DNS: A survey presented in [5], aims to classify botnet 
detection methods. There is a method that uses DNS data 
and traffic network to detect malicious hosts that 
explained in [27].
In summary, the automatic detection of botnets is a 
challenge and demands for a different approach. We fill 
this gap by designing a method to detect C&C channels 
based on traffic analysis and data mining techniques. 
Proposed approach uses clustering technique to create two 
clusters of flows and events. In addition, it uses of a 
correlation engine to combine clusters information. The 
result cluster refines based on rules and pervious 
information to specify bot cluster(s). The approach uses 
clustering and correlation benefits that proposed in other 
papers. In addition, this approach adds a rule-based logic 
and information combination to reduce false positive. 

3. Proposed Approach 

In this section, we discuss on proposed approach. First, 
we present basic definitions. Second, we offer network 
configuration for collect flows and events. Third, we 
express proposed approach and explain different parts of 
the algorithm. 

3.1 Basic Definitions

Definition1. A C&C botnet uses a protocol to 
communicate instructions and reports, signal a bot’s state 
and availability as well as transmit bot program updates 
between one or more bots and the controlling entity, the 
bot master [28]. 
Definition2. A flow is a unidirectional stream of packets 
that pass through a network element and share a common 
set of attributes [8].
Definition3. Two flows are said to be correlated when 
they exhibit one or more common properties [22]:

• They are the product of similar applications.
• There is a causal relationship.
• There is one transmitter and multiple receivers.

Definition4. Types of Correlation [15]:
• Vertical Correlation: detecting command and 

control (C&C) channels used by botmasters to 
communicate with each infected machine.

• Horizontal Correlation: botnet detection is based 
upon patterns of crowd behavior exhibited by 
collections of bots in response to botmaster 
commands.

3.2 Flows and Events Collectors

The sensor is the device or program that captures data 
from your network and forwards it to the collector. The 
collector is software that receives sensor records and 
writes them to disk. For collecting flows and events, we 
must configure two collectors on network. Flow Collector 
saves flow records that capture from the network. Event 
Collector saves alert records that reported by security
sensor, such as IDS, Firewall, Antivirus and etc. Figure 
(1) shows configured network that collects flows and 
events and we will describe in continue. Also, figure (2) 
illustrates our methodology for C&C botnets detection 
that will explain in section 3.3.

3.2.1 Flow Collector

The biggest flow collectors on Internet are cflowd, flowd
and flow-tools. Flow-tools, the most commonly used flow 
management tool kit. To install the latest version of flow-
tools from source, download the source code from 
http://code.google.com/p/flow-tools/, and extract it. Now 
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go into the flow-tools directory, and read the install file 
for the current compiling instructions. The process 
probably includes the steps configure, make, and make 
install [29].
The flow-capture program listens on a specified UDP port 
for incoming flow exports. It then captures the data and 

writes flow records to disk. It configure on a special IP 
and port. Many network hardware manufacturers, such as 
Cisco, include flow export in their products. Configure 
NetFlow on a Cisco router interface. 

Fig. 1 Network configuration

Fig. 2 An anomaly methodology for detect C&C botnets 
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3.2.2 Event Collector

All the network events from security sensors sent at a 
central location. Events collector allows us to get events 
from remote sensors and store them in a local event log 
on the collector computer. All data in the forwarded event 
is saved in the Event Collector. Open Source Security 
Information Management (OSSIM) is an open source 
security information and event management system, 
integrating a selection of tools designed to aid network 
administrators in computer security, intrusion detection 
and prevention. We configure security sensors on OSSIM, 
such that, sensors sent events to interface that connected 
to OSSIM. 

3.3 Methodology 

In this section, we explain a new botnet detection anomaly 
approach that the goal detects same patterns belong to the 
same botnet in network. Botnets have similar behaviors 
during a time period. Our approach finds similarity
behavior of hosts using NetFlow information and reported 
events through a predefined time period. 

We proposed an anomaly methodology for C&C bot 
detection that contains below steps: 

1. Collecting network traffic and events 

2. Refining records based on basic filtering, white 
list and black list

3. Creating two clusters of remaining flows and 
events 

4. Refining clusters based on patterns and policies, 
and merging clusters information together

5. Using rules and pervious information to discover 
correlations and certain patterns, and reporting
the bot cluster(s)

In first step, we collect NetFlow data and events of 
sensors and store in Flow and Event Collectors that 
explained in section 3.2. 

In next step, we refine NetFlow and event records based 
on basic filtering, black list and white list. Before this, we 
must unify events. Unification Events level aims to
unifying events from all security sensors in a single 
format on just one console. We will be able to observe all 
security events for a particular moment in time on the
same screen and in the same format. So, we will need to
organize a translator and a database. The translator 
unifies all network events that coming from different 
sensors, in same format and stores them in the same 
database. 

In the basic filtering level, we filter out all the flows that 
are not directed from internal hosts to external hosts. 
Therefore, we ignore the flows related to communications 
between internal hosts and flows initiated from external 
hosts towards internal hosts. We also filter out flows that 
are not completely established, i.e., these flows are mainly 
caused by scanning activity (e.g., when a host sends SYN 
packets without completing the TCP hand-shake) [18]. In 
white list filtering, we filter out those flows whose 
destinations are well known as legitimate servers (e.g., 
Google, Yahoo!) that will unlikely host botnet C&C 
servers. In black list filtering, we filter out those flows 
whose destinations are well known as malicious servers.

In third step, we create two clusters of remaining flows 
and events. Clustering technique enables us to identify 
groups of similar C&C flows and events in our data set. 
We use clustering for three main reasons. Often, the 
message lengths of the messages in a C&C flow are not 
equally static throughout several C&C flows of one botnet, 
but show slight deviations in a small range. Thus, we 
need to aggregate similar flows and learn the range of
each message’s length in a C&C flow. Second, grouping 
similar C&C flows into clusters allows us to build a 
centroid for each cluster which represents the fingerprint 
of this cluster’s C&C flows. Third, the similar behaviors 
of same botnets make same events groups in regular 
periods. The clustering step produces efficient 
representations that serve as training data for the
subsequent classification of flows. In addition, the 
clustering results provide insights into and measure the 
relationships between clusters of different malware 
families [28]. We need to select a clustering method that 
has above specification. This definition of similarity 
between flow and event groups gives us the opportunity to 
apply hierarchical clustering. This allows us to build a 
dendrogram, i.e., a tree like graph (see Fig. 3) that 
encodes the relationships among the bots. 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

143

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



Fig. 3 Example of hierarchical clustering for botnet detection

Hierarchical clustering is a method of cluster analysis 
which seeks to build a hierarchy of clusters. Strategies for 
hierarchical clustering generally fall into two types:

 Bottom-up approach: each observation starts in 
its own cluster, and pairs of clusters are merged 
as one moves up the hierarchy. 

 Top-down approach: all observations start in one 
cluster, and splits are performed recursively as 
one moves down the hierarchy

There are other clustering methods that used in [30], [31] 
and [32]. Reference [30] uses the spectral clustering 
method. Of course, references [18], and [28] use 
hierarchical clustering. 

In next step, we refine clusters based on patterns and
policies. The clusters combine their information. Patterns 
are initial signs of a possible attack. In this level, we 
attempt to determine behavior patterns of C&C botnets
that help us identify botmaster, malicious hosts, path 
taken, and attack behavior and method. We define attack 
behavior as the sequence of attacks and activities carried 
out by a botmaster on one or more malicious machines.
Policy are sets of conditions, constraints, and settings that 
allow us to designate who is authorized to connect to the 
network and the circumstances under which they can or 
cannot connect. We must survey flow and event clusters to 
see that flows are based on policies and events ignore, 
which policies. In last level of this step, we merge two 
cluster based on a correlation engine. The correlation 
engine executes an operation on input clusters and return 
output cluster. Correlation in our methodology means the 
ability to view all flows and events in all systems in one 
cluster and in the same format to improve detection 
capabilities. Correlation improves reliability, sensitivity, 
and abstraction. 

In final step, we use rules and pervious information to 
discover correlations and certain patterns, and report the 
bot cluster(s). We define lists of rules for each sequence of
correlation flows that we expect as behavior C&C botnets.
The rules aimed at locating unknown or undetectable
attacks, since patterns that characterize them are 
unavailable. In last level, we combine the new and old 
information to reduce false positive. 

The approach, as an integrated solution, offers monitoring 
at any level, from the lowest to the highest. We proposed 
an anomaly detector that the detection does in multi 
stages: 

 Basic filtering, black list and white list

 Patterns and polices

 Correlation engine

 Rules and pervious information
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4. Simulation

In this section, we evaluate our approach. For this end, we 
simulate a network by GNS3. We configure a network on 
GNS3 that infected to Zeus bot. Zeus is computer 
malware that used to steal banking information by man-
in-the-browser, keystroke logging and form grabbing. In 
this paper, we use centralized Zeus botnets that all bots 
only connect to a botmaster and receive command and 
control traffic from only a server. Flow characteristics that 
we need to detect Zeus botnet, fall into two categories: 

 Static characteristics: source and destination IP 
address, source and destination port numbers and 
protocol

 Dynamic characteristics: packet event times, 
bytes per packet, periodic throughput samples, 
post and get

We need post and get, because Zeus uses HTTP. We show 
configured network on GNS3 in Fig. 4. We send a copy of 
network traffic to OSSIM on the interface of Cisco router
that IP has 192.168.100.1. OSSIM can collect flows and 
events and stores in database. We setup IDS on OSSIM. 
So, we have a flow database and a unification event 
database. Figure (5) shows part of the network traffic in a 
special time period. For next step, we ignore black list and 
white list levels. In basic filtering, we filter out the flows 
related to communications between internal hosts and 
flows initiated from external hosts towards internal hosts.

Fig. 4 Network simulation on GNS3 
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Fig. 5 Part of the network traffic

Various botnets have different behavior patterns on 
network. We create flow cluster based on number of 
packets, bytes per packet, duration, get and post, because 
Zeus is an unknown bot for me, before we detect it and 
understand its behavior patterns. Also, we do not policy 
level, because have no policy for the network. 
Events cluster can’t help us, because Zeus uses HTTP. We 
modified the flow cluster in correlation engine and go to 

next step. In rules level, according to Fig. 5, rules
understand that a special pattern exists in traffic. We have 
two important clusters that have similar specification. 
Some flow records of this clusters show in fig. 6 and fig. 
7. 

Fig. 6 Some flow records of cluster 1
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Fig. 7 Some flow records of cluster 2

Fig. 8 Behavior pattern of Zeus bot

You can see get and post pattern of Zeus bot in fig. 8.  
Bots usually connect to botmaster for a few seconds in 
special periods. Bots have same behavior in different 
periods. We can see records with same specification in 
cluster 1. According to what we know about botnets, 
define rules. So, rules level reports cluster 1 as bot cluster, 
because we predefine this specification as bot in rules 
level. 

5. Conclusions

In this paper, we have shown a methodology for anomaly 
detection of C&C botnets that incorporates a combination 
of novel techniques to overcome the challenges imposed 
by the use of NetFlow data and events. The approach 
detects botnets in multi stages, so we expect to reduce 
false positive. Bots have same behavior on network that 
they distinguish from normal traffic. So, we can create 
number of hierarchical clusters of network flows and 
events and find similar behavior and detect botnet 

cluster(s) based on basic filtering, black list and white list, 
patterns, polices, correlation engine, rules and pervious 
information. 
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