
Botnet Detection using NetFlow and Clustering

Pedram Amini1, Reza Azmi2 and MuhammadAmin Araghizadeh3

1 ICT Department, Malek-Ashtar University of Technology
Tehran, Iran

amini@mut.ac.ir

2 Department of Technical and Engineering, Alzahra University
Tehran, Iran

azmi@alzahra.ac.ir

3 Department of Electrical and Computer Engineering, University of Tehran
Tehran, Iran

araghizadeh@ut.ac.ir

Abstract
Among the various forms of malware, botnets are becoming the
major threats on the Internet that use for many attacks, such as
spam, distributed denial-of-service (DDoS), identity theft and
phishing. NetFlow protocol is a standard for monitoring Internet
traffic that developed by Cisco Systems. Therefore, it is very
effective to identifying unusual programs generating illegal
traffic, or additional load, and also identification of botnet. The
main goal of this paper is to show a novel approach for botnet
detection using data records of NetFlow protocol and clustering
technique. Our approach for C&C bot detection is to examine
flow characteristics such as IP, port, packet event times and
bytes per packet for evidence of botnet activity. First we collect
the flows and refined records based on basic filtering, white list
and black list. The remaining records produce a cluster and the
cluster refined based on patterns, policies, and another cluster
that generated based on reported events, alerts and activities of
network security sensors. We apply hierarchical clustering that
allows us to build a dendrogram, i.e., a tree like graph that
encodes the relationships among the bots. The merged cluster
modifies based on rules and combined with other information
about detected infected nodes to reduce false positive.

Keywords: NetFlow Protocol, C&C Botnet, Hierarchical
Clustering, Correlation, Anomaly Detection, Network Security.

1. Introduction

The term “Bot” is derived from the word “Robot” that is
an intelligent software application that runs via worms,
trojans or other malicious codes to perform a group of
cyber operations over the Internet. The other name of bot
is zombie. A large number of bots form a connected group
called a “Botnet” that under the remote control of a
human operator called a “Botmaster”.
According to the explanation in [1], botnets can be
classified to four categories: IRC, HTTP, P2P and DNS.
The IRC bot is a centralized topology that a central point

sends messages between clients [2]. In connection phase,
the bot program establishes an IRC channel, and connects
the zombie to the command and control (C&C) server.
Upon establishment of C&C channel, the zombie becomes
a part of attacker’s botnet army. Then, the actual botnet
command and control activities will be started. The
botmaster uses the IRC channel to disseminate commands
to his bot army. Bots receive and execute commands sent
by botmaster. The IRC channel enables the botmaster to
remotely control the action of large number of bots to
conduct various illicit activities [3].
In the http bot, the command and control (C&C) is http
based [1]. In HTTP-based botnets, bots contact C&C
server periodically to fetch commands. The HTTP
protocol is a popular communication method by botnet
which is difficult to be detected. Botnets usually bypass
security devices using the HTTP protocol [4].
Centralized control of botnets offers a single point of
failure for the botnet. So, more stable architectures will be
used by botnet operators, P2P architecture [1]. P2P
communication system has several important advantages
over centralized networks. It is much harder to disrupt
and the design of P2P systems are more complex. This
means that the compromise of a single bot does not
necessarily mean the loss of the entire botnet. But, there
are typically no guarantees on message delivery or latency
[2].
When bots used DNS as a communication channel to
connect to botmaster, called the DNS botnets. Recent
DNS botnets are so difficult to be detected, because using
new fluxing features. Fast flux (FF), a mechanism that a
set of IP addresses change frequently corresponding to a
unique domain name. Domain flux (DF), a mechanism
that a set of domain names are generated automatically
and periodically corresponding to a unique IP address [5].

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

139

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Botnet detection and defense is an important research
task. There are mainly many categories of botnet detection
and tracking methods. The detection techniques are
classified into four classes in [3]: signature-based,
anomaly-based, Domain Name System (DNS)-based and
mining-based techniques.
According to [4], there are two approaches of botnet
detection, one is signatures based method and the other is
based on anomaly. In [6], detection methods are traffic
based, anomaly based, nick name based, independent of
C&C controls and spam mail based.
In this research, the main data-source for botnet detection
is NetFlow records. NetFlow protocol has the task of
network traffic analysis and plays a vital role in network
troubleshooting, performance improvement and increased
availability of members. The protocol stores information
about network nature, such as who, when and how has
used network traffic. In last, the SNMP protocol used for
monitoring network traffic. SNMP however aggregates
information on a very high level (i.e. network interface
throughput or device uptime), but, a lot of information is
lost. The SNMP protocol can't specify that who and how
much has used bandwidth. So, the NetFlow protocol
designed for collects information of network layer [7].
A flow is a unidirectional stream of packets that pass
through a network element and share a common set of
attributes [8]. NetFlow version 9 is the latest release from
Cisco and was also selected by the IETF as the basis for
the IPFIX standard. NetFlow protocol is useful in
identification of agents producing an additional load to
the network. Therefore it is very effective in identifying
unusual programs such as botnet.
Several mechanisms have been proposed for botnet
detection; One of these mechanisms, uses NetFlow
protocol. Low volume of data, simplicity of computation,
lower false positive and being online are some of the
advantages of this mechanism against other mechanisms.
Network flow records high-level descriptions of Internet
connections, but not the actual data transferred [9].
Various methods are used to analyze NetFlow data. One
of these methods is clustering. Bots have a specific traffic
pattern to communicate over the network, like ports, size
of the packets in each direction, and duration. So, if
various data mining techniques combined with clustering
analysis, specific patterns of behavior in network traffic
are identified and can be found bots.
We proposed a method for C&C bot detection that
contains 5 steps: First, we collect network traffic and
events. Second, records refine based on basic filtering,
white list and black list. Third, we use clustering
technique to create two clusters of remaining flows and
events. Forth, we refine the flows cluster based on
patterns, policies, and events cluster. In last step, we use

rules and pervious information to discover correlations
and certain patterns, and report the bot cluster(s).
The remainder of this paper is structured as follows.
Section 2 discusses on related work, defines the scope of
this article and highlights innovative aspects of our
approach. In section 3, the general methodology as well as
proposed approach is described. Finally, we offer the
simulation of our approach in section 4 and conclude in
section 5.

2. Related Work

Botnet detection and tracking has been a major research
topic in recent years. Different solutions have been
proposed in different sources. Traditionally, botnets have
mainly been identified in several ways. According to the
explanation in [3], botnet detection techniques can be
classified as being signature-based, anomaly-based, DNS-
based, and mining-based. Several of the prevalent data
types that used for botnet detection and tracking have
DNS data, NetFlow data, packet tap data, address
allocation data, honeypot data and host data [2].
According to [10], bot detection mechanisms contain
infiltration, C&C server hijack, syntactic, horizontal
correlation, vertical correlation, host-based and network-
based. An addition, botmaster detection mechanisms
contain marking, logging and stepping-stone detection
that explained in [10].
In this paper, data source is NetFlow data. NetFlow is a
traffic profile monitoring technology developed by Darren
Kerr and Barry Bruins at Cisco Systems, back in 1996.
NetFlow data provides important information about
network conversations and behaviors. Each unique flow is
recorded by the network devices or probes, and the flows
are then reported to a data collection server [11]. NetFlow
can help network managers to monitor suspect Internet
botnet’s activities by analyzing the source data from the
router [12]. NetFlow data represents information gathered
from the network by sampling traffic flows and obtaining
information regarding source and destination IP addresses
and port numbers [13].
A survey that aims at analyzing, classifying and
comparing the most relevant network-based botnet
detection methods, can see in [14]. Generally, botnet
detection methods using NetFlow are classified in five
categories: correlation, clustering, IRC, machine learning
and DNS.
Correlation: Disclosure, a large-scale, wide-area botnet
detection system incorporates a combination of novel
techniques to overcome the challenges imposed by the use
of NetFlow data. Several groups of features allow
Disclosure to reliably distinguish C&C channels from

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

140

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

benign traffic using NetFlow records [15]. BotHunter that
explained in [16], is analytical strategy of matching the
dialog flows between internal assets and the broader
Internet as dialog-based correlation, and contrast this
strategy to other intrusion detection and alert correlation
methods. A same approach presented for C&C bot, in [17].
Clustering: in this approach, a clustering scheme with a
set of traffic features design to determine group similar
traffic patterns. BotMiner defines a botnet as a
coordinated group of malware instances that are
controlled via C&C communication channels. In
BotMiner, detection framework clusters similar
communication traffic and similar malicious traffic, and
performs cross cluster correlation to identify the hosts that
share both similar communication patterns and similar
malicious activity patterns [18]. BotTrack is an approach
based on clustering and PageRank algorithm that analyzes
communication behavioral patterns and to infer potential
botnet activities [19]. An approach proposed based on
PageRank and MapReduce in [20].
IRC: Internet Relay Chat (IRC) is a concept that allows
users to communicate with each other in real time. There
exist several separate networks of so called IRC servers,
which provide users with a connection to IRC. A common
method of an attacker to communicate with the botnet is
to use IRC. Rishi is an approach to detect IRC
characteristics of infected machines that explained in
[21]. There are more methods for detect IRC bot that
explained in [22], [23], [24] and [25].
Machine Learning: Reference [26] uses machine
learning techniques to identify the command and control
traffic of IRC-based botnets.
DNS: A survey presented in [5], aims to classify botnet
detection methods. There is a method that uses DNS data
and traffic network to detect malicious hosts that
explained in [27].
In summary, the automatic detection of botnets is a
challenge and demands for a different approach. We fill
this gap by designing a method to detect C&C channels
based on traffic analysis and data mining techniques.
Proposed approach uses clustering technique to create two
clusters of flows and events. In addition, it uses of a
correlation engine to combine clusters information. The
result cluster refines based on rules and pervious
information to specify bot cluster(s). The approach uses
clustering and correlation benefits that proposed in other
papers. In addition, this approach adds a rule-based logic
and information combination to reduce false positive.

3. Proposed Approach

In this section, we discuss on proposed approach. First,
we present basic definitions. Second, we offer network
configuration for collect flows and events. Third, we
express proposed approach and explain different parts of
the algorithm.

3.1 Basic Definitions

Definition1. A C&C botnet uses a protocol to
communicate instructions and reports, signal a bot’s state
and availability as well as transmit bot program updates
between one or more bots and the controlling entity, the
bot master [28].
Definition2. A flow is a unidirectional stream of packets
that pass through a network element and share a common
set of attributes [8].
Definition3. Two flows are said to be correlated when
they exhibit one or more common properties [22]:

• They are the product of similar applications.
• There is a causal relationship.
• There is one transmitter and multiple receivers.

Definition4. Types of Correlation [15]:
• Vertical Correlation: detecting command and

control (C&C) channels used by botmasters to
communicate with each infected machine.

• Horizontal Correlation: botnet detection is based
upon patterns of crowd behavior exhibited by
collections of bots in response to botmaster
commands.

3.2 Flows and Events Collectors

The sensor is the device or program that captures data
from your network and forwards it to the collector. The
collector is software that receives sensor records and
writes them to disk. For collecting flows and events, we
must configure two collectors on network. Flow Collector
saves flow records that capture from the network. Event
Collector saves alert records that reported by security
sensor, such as IDS, Firewall, Antivirus and etc. Figure
(1) shows configured network that collects flows and
events and we will describe in continue. Also, figure (2)
illustrates our methodology for C&C botnets detection
that will explain in section 3.3.

3.2.1 Flow Collector

The biggest flow collectors on Internet are cflowd, flowd
and flow-tools. Flow-tools, the most commonly used flow
management tool kit. To install the latest version of flow-
tools from source, download the source code from
http://code.google.com/p/flow-tools/, and extract it. Now

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

141

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

go into the flow-tools directory, and read the install file
for the current compiling instructions. The process
probably includes the steps configure, make, and make
install [29].
The flow-capture program listens on a specified UDP port
for incoming flow exports. It then captures the data and

writes flow records to disk. It configure on a special IP
and port. Many network hardware manufacturers, such as
Cisco, include flow export in their products. Configure
NetFlow on a Cisco router interface.

Fig. 1 Network configuration

Fig. 2 An anomaly methodology for detect C&C botnets

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

142

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

3.2.2 Event Collector

All the network events from security sensors sent at a
central location. Events collector allows us to get events
from remote sensors and store them in a local event log
on the collector computer. All data in the forwarded event
is saved in the Event Collector. Open Source Security
Information Management (OSSIM) is an open source
security information and event management system,
integrating a selection of tools designed to aid network
administrators in computer security, intrusion detection
and prevention. We configure security sensors on OSSIM,
such that, sensors sent events to interface that connected
to OSSIM.

3.3 Methodology

In this section, we explain a new botnet detection anomaly
approach that the goal detects same patterns belong to the
same botnet in network. Botnets have similar behaviors
during a time period. Our approach finds similarity
behavior of hosts using NetFlow information and reported
events through a predefined time period.

We proposed an anomaly methodology for C&C bot
detection that contains below steps:

1. Collecting network traffic and events

2. Refining records based on basic filtering, white
list and black list

3. Creating two clusters of remaining flows and
events

4. Refining clusters based on patterns and policies,
and merging clusters information together

5. Using rules and pervious information to discover
correlations and certain patterns, and reporting
the bot cluster(s)

In first step, we collect NetFlow data and events of
sensors and store in Flow and Event Collectors that
explained in section 3.2.

In next step, we refine NetFlow and event records based
on basic filtering, black list and white list. Before this, we
must unify events. Unification Events level aims to
unifying events from all security sensors in a single
format on just one console. We will be able to observe all
security events for a particular moment in time on the
same screen and in the same format. So, we will need to
organize a translator and a database. The translator
unifies all network events that coming from different
sensors, in same format and stores them in the same
database.

In the basic filtering level, we filter out all the flows that
are not directed from internal hosts to external hosts.
Therefore, we ignore the flows related to communications
between internal hosts and flows initiated from external
hosts towards internal hosts. We also filter out flows that
are not completely established, i.e., these flows are mainly
caused by scanning activity (e.g., when a host sends SYN
packets without completing the TCP hand-shake) [18]. In
white list filtering, we filter out those flows whose
destinations are well known as legitimate servers (e.g.,
Google, Yahoo!) that will unlikely host botnet C&C
servers. In black list filtering, we filter out those flows
whose destinations are well known as malicious servers.

In third step, we create two clusters of remaining flows
and events. Clustering technique enables us to identify
groups of similar C&C flows and events in our data set.
We use clustering for three main reasons. Often, the
message lengths of the messages in a C&C flow are not
equally static throughout several C&C flows of one botnet,
but show slight deviations in a small range. Thus, we
need to aggregate similar flows and learn the range of
each message’s length in a C&C flow. Second, grouping
similar C&C flows into clusters allows us to build a
centroid for each cluster which represents the fingerprint
of this cluster’s C&C flows. Third, the similar behaviors
of same botnets make same events groups in regular
periods. The clustering step produces efficient
representations that serve as training data for the
subsequent classification of flows. In addition, the
clustering results provide insights into and measure the
relationships between clusters of different malware
families [28]. We need to select a clustering method that
has above specification. This definition of similarity
between flow and event groups gives us the opportunity to
apply hierarchical clustering. This allows us to build a
dendrogram, i.e., a tree like graph (see Fig. 3) that
encodes the relationships among the bots.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

143

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 3 Example of hierarchical clustering for botnet detection

Hierarchical clustering is a method of cluster analysis
which seeks to build a hierarchy of clusters. Strategies for
hierarchical clustering generally fall into two types:

 Bottom-up approach: each observation starts in
its own cluster, and pairs of clusters are merged
as one moves up the hierarchy.

 Top-down approach: all observations start in one
cluster, and splits are performed recursively as
one moves down the hierarchy

There are other clustering methods that used in [30], [31]
and [32]. Reference [30] uses the spectral clustering
method. Of course, references [18], and [28] use
hierarchical clustering.

In next step, we refine clusters based on patterns and
policies. The clusters combine their information. Patterns
are initial signs of a possible attack. In this level, we
attempt to determine behavior patterns of C&C botnets
that help us identify botmaster, malicious hosts, path
taken, and attack behavior and method. We define attack
behavior as the sequence of attacks and activities carried
out by a botmaster on one or more malicious machines.
Policy are sets of conditions, constraints, and settings that
allow us to designate who is authorized to connect to the
network and the circumstances under which they can or
cannot connect. We must survey flow and event clusters to
see that flows are based on policies and events ignore,
which policies. In last level of this step, we merge two
cluster based on a correlation engine. The correlation
engine executes an operation on input clusters and return
output cluster. Correlation in our methodology means the
ability to view all flows and events in all systems in one
cluster and in the same format to improve detection
capabilities. Correlation improves reliability, sensitivity,
and abstraction.

In final step, we use rules and pervious information to
discover correlations and certain patterns, and report the
bot cluster(s). We define lists of rules for each sequence of
correlation flows that we expect as behavior C&C botnets.
The rules aimed at locating unknown or undetectable
attacks, since patterns that characterize them are
unavailable. In last level, we combine the new and old
information to reduce false positive.

The approach, as an integrated solution, offers monitoring
at any level, from the lowest to the highest. We proposed
an anomaly detector that the detection does in multi
stages:

 Basic filtering, black list and white list

 Patterns and polices

 Correlation engine

 Rules and pervious information

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

144

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

4. Simulation

In this section, we evaluate our approach. For this end, we
simulate a network by GNS3. We configure a network on
GNS3 that infected to Zeus bot. Zeus is computer
malware that used to steal banking information by man-
in-the-browser, keystroke logging and form grabbing. In
this paper, we use centralized Zeus botnets that all bots
only connect to a botmaster and receive command and
control traffic from only a server. Flow characteristics that
we need to detect Zeus botnet, fall into two categories:

 Static characteristics: source and destination IP
address, source and destination port numbers and
protocol

 Dynamic characteristics: packet event times,
bytes per packet, periodic throughput samples,
post and get

We need post and get, because Zeus uses HTTP. We show
configured network on GNS3 in Fig. 4. We send a copy of
network traffic to OSSIM on the interface of Cisco router
that IP has 192.168.100.1. OSSIM can collect flows and
events and stores in database. We setup IDS on OSSIM.
So, we have a flow database and a unification event
database. Figure (5) shows part of the network traffic in a
special time period. For next step, we ignore black list and
white list levels. In basic filtering, we filter out the flows
related to communications between internal hosts and
flows initiated from external hosts towards internal hosts.

Fig. 4 Network simulation on GNS3

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

145

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 5 Part of the network traffic

Various botnets have different behavior patterns on
network. We create flow cluster based on number of
packets, bytes per packet, duration, get and post, because
Zeus is an unknown bot for me, before we detect it and
understand its behavior patterns. Also, we do not policy
level, because have no policy for the network.
Events cluster can’t help us, because Zeus uses HTTP. We
modified the flow cluster in correlation engine and go to

next step. In rules level, according to Fig. 5, rules
understand that a special pattern exists in traffic. We have
two important clusters that have similar specification.
Some flow records of this clusters show in fig. 6 and fig.
7.

Fig. 6 Some flow records of cluster 1

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

146

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 7 Some flow records of cluster 2

Fig. 8 Behavior pattern of Zeus bot

You can see get and post pattern of Zeus bot in fig. 8.
Bots usually connect to botmaster for a few seconds in
special periods. Bots have same behavior in different
periods. We can see records with same specification in
cluster 1. According to what we know about botnets,
define rules. So, rules level reports cluster 1 as bot cluster,
because we predefine this specification as bot in rules
level.

5. Conclusions

In this paper, we have shown a methodology for anomaly
detection of C&C botnets that incorporates a combination
of novel techniques to overcome the challenges imposed
by the use of NetFlow data and events. The approach
detects botnets in multi stages, so we expect to reduce
false positive. Bots have same behavior on network that
they distinguish from normal traffic. So, we can create
number of hierarchical clusters of network flows and
events and find similar behavior and detect botnet

cluster(s) based on basic filtering, black list and white list,
patterns, polices, correlation engine, rules and pervious
information.

References
[1] Z. Zhaosheng, L. Y. C. Guohan, F. Zhi, P. Roberts, and H.

Keesook, “Botnet Research Survey”, 32nd Annual IEEE
International Computer Software and Applications, Turku,
July 2008, pp. 967-972.

[2] M. Bailey, E. Cooke, F. Jahanian, X. Yunjing, and M. Karir,
“A Survey of Botnet Technology and Defenses”, Conference
For Homeland Security, Cybersecurity Applications &
Technology, Washington, March 2009, pp. 299-304.

[3] M. Feily, A. Shahrestani, and S. Ramadass, “A Survey of
Botnet and Botnet Detection”, Third International
Conference on Emerging Security Information, Systems and
Technologies, Athens, June 2009, pp. 268-273.

[4] C. Li, W. Jiang, and X. Zou, “Botnet: Survey and Case
Study”, 4th International Conference on Innovative

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

147

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Computing, Information and Control, Kaohsiung, December
2009, pp. 1184-1187.

[5] Z. Lei, Y. Shui, W. Di, and P. Watters, “A Survey on Latest
Botnet Attack and Defense”, 10th International Conference
on Trust, Security and Privacy in Computing and
Communications, Changsha, November 2011, pp. 53-60.

[6] H. S. Nair, and V. S. E. Ewards, “A Study on Botnet
Detection Techniques”, International Journal of
Scientific and Research Publications, Vol. 2, Issue 4,
April 2012.

[7] G. Vliek, “Detecting Spam Machines, a Netfow-Data
Based Approach”, Faculty of Electrical Engineering,
Mathematics and Computer Science, Master of
Science, University of Twente, Netherlands, February
2009.

[8] I. Drago, R. R. R. Barbosa, R. Sadre, A. Pras, and J.
Schönwälder, “Report of the Second Workshop on the
Usage of NetFlow/IPFIX in Network Management”,
Journal of Network and Systems Management,
springer, Vol. 19, Issue 2, June 2011, pp. 298-304.

[9] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A
Survey of Network Flow Application”, Journal of
Network and Computer Application, 2013, pp. 567-
581.

[10] S. Khattak, N. Ramay, K. Khan, A. Syed, and S.
Khayam, “A Taxonomy of Botnet Behavior, Detection,
and Defense”, Journal of Communications Surveys &
Tutorials, IEEE, Vol. PP, Issue 99, October 2013, pp.
1-27.

[11] S. Choudhary, and B. Srinivasan, “Usage of Netflow
in Security and Monitoring of Computer Networks”,
International Journal of Computer Applications, Vol.
68, No.24, April 2013.

[12] V. M. Dhamdhere, and G. A. Patil, “Netflow Method
Used for Internet Worm Detection”, International
Journal of Scientific & Engineering Research, Vol. 3,
Issue 3, March 2012.

[13] M. Lee, N. Duffield, and R. R. Kompella, “Two
Samples are Enough: Opportunistic Flow-level
Latency Estimation Using NetFlow”, 29th Conference
on Information, IEEE Press Piscataway, 2010, pp.
2196-2204.

[14] S. Garcia, A. Zunino, and M. Campo, “Survey on
Network-Based Botnet Detection Methods”,
International Journal of Security and Communication
Networks, 2013.

[15] L. Bilge, D. Balzarroti, W. Robertson, E. Kirda, and
C. Kruegle, “DISCLOSURE: Detecting Botnet
Command and Control Servers Through Large-Scale
NetFlow Analysis”, 28th Annual Computer Security
Applications Conference, New York, 2012, pp. 129-
138.

[16] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W.
Lee, “BotHunter: Detecting Malware Infection

Through IDS-Driven Dialog Correlation”, Symposium
on USENIX Security, Berkeley, Article No. 12, 2007.

[17] G. Gu, R. Perdisci, J. Zhang, and W. Lee,
“BotMiner: Clustering Analysis of Network Traffic for
Protocol- and Structure-Independent Botnet
Detection”, 17th Conference on Security Symposium,
Berkeley, 2008, pp. 139-154.

[18] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting
Botnet Command and Control Channels in Network
Traffic”, 2008.

[19] J. Francois, S. Wang, R. State, and T. Engel,
“BotTrack: Tracking Botnets using NetFlow and
PageRank”, 10th International IFIP TC 6 Conference
on Networking, Berlin, 2011, pp. 1-14.

[20] J. Francois, S. Wang, W. Bronzi, R. State, and T.
Engle, “BotCloud: Detecting Botnets using
MapReduce”, IEEE International Workshop on
Information Forensics and Security, Iguacu Falls,
December 2011, pp. 1-6.

[21] J. Goebel, and T. Holz, “Rishi: Identify Bot
Contaminated Hosts by IRC Nickname Evaluation”,
First Conference on First Workshop on Hot Topics in
Understanding Botnets, Berkeley, 2007.

[22] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas,
“Botnet Detection Based on Network Behavior”,
Botnet Detect, Springer, 2008, pp. 1-24.

[23] M. Thapliyal, A. Bijalwan, N. Garg, and E. S. Pilli,
“A Generic Process Model for Botnet Forensic
Analysis”, Conference on Advances in
Communication and Control Systems, 2013.

[24] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley,
“Detecting Botnets with Tight Command and
Control”, 31st IEEE Conference on Local Computer
Networks, Tampa, November 2006, pp. 195-202.

[25] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-
Scale Botnet Detection and Characterization”, First
Conference on First Workshop on Hot Topics in
Understanding Botnets, Berkeley, 2007.

[26] Livadas, C., Walsh B., Lapsley, D., and Strayer, T.,
“Using Machine Learning Techniques to Identify
Botnet Traffic”, 31st IEEE Conference on Local
Computer Networks, Tampa, November 2006, pp.
967-974.

[27] S. Arshad, M. Abbaspour, M. Kharrazi, and H.
Sanatkar, “An Anomaly-based Botnet Detection
Approach for Identifying Stealthy Botnets”, IEEE
International Conference on Computer Applications
and Industrial Electronics, Penang, December 2011,
pp. 564 - 569.

[28] C. J. Dietrich, C. Rossow, and N. Pohlmann,
“CoCoSpot: Clustering and Recognizing Botnet
Command and Control Channels using Traffic

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

148

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Analysis”, Computer Networks, Vol. 57, Issue 2,
February 2013, pp. 475–486.

[29] M. W. Lucas, Network Flow Analysis, San
Francisco, No Starch Press, 2010.

[30] T. W. Chiou, S. C. Tsai, and Y. B. Lin, “Network
Security Management with Traffic Pattern
Clustering”, Soft computing, Springer, January 2014.

[31] S. Garg, A. K. Sarje, and S. K. Peddoju, “Improved
Detection of P2P Botnets through Network Behavior
Analysis”, Recent Trends in Computer Networks and
Distributed Systems Security Communications in
Computer and Information Science, Vol. 420, 2014,
pp. 334-345.

[32] K. Muthumanickam, E. Ilavarasan, and S. K.
Dwivedi, “A Dynamic Botnet Detection Model based
on Behavior Analysis”, International Journal on
Recent Trends in Engineering & Technology, Vol. 10,
Issue 1, January 2014, pp. 104-111.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

149

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

