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Abstract 

Steiner tree problem leads to solutions in several scientific and 
business contexts, including computer networks routing and 
electronic integrated circuits. Computing fields of this problem 
has become an important research topic in computational 
geometry. Considering the number of points in the Euclidean 
plane, called terminal points, a minimum spanning tree is 
obtained which connects these points. A series of other points 
(Steiner points) are added to the tree, which makes it shorter in 
length. The resulting tree is called Euclidean Steiner minimal 
tree. It is considered as an NP-hard problem. Considering a 
simple polygon P with m vertices and n terminals, in which you 
are trying to find a Euclidean Steiner tree that is connected to all 
n terminals existing inside p. In this paper we propose a solution 
for several terminals in a simple polygonal in presence of 
obstacles. 
Keywords: Euclidean Steiner Minimal Tree, Straight skeleton of 
simple polygon, geodesic convex hull. 

1. Introduction 

Steiner problem can be used in scientific and commercial 
fields such as computer networks routing and integrated 
electronic circuits, oil distribution and transport network. 
Computational fields of this problem make it an important 
research topic in computational geometry. Considering a 
few points in Euclidean plane, the shortest Path 
connecting these points lead to the attainment of a tree is 
called Euclidean Steiner minimal tree. Euclidean Steiner 
minimal tree is considered as an NP-hard problem [1]. In 
this paper, we obtain a Euclidean Steiner minimal tree 
(ESMT), which has n terminals in a simple polygon with 
m vertices and several obstacles. It has been proven that 
ESMTs connecting  4   terminals together have high-quality 

solutions for cases with no obstacles [2,3].  Lee et al.  [4] 
proposed an a algorithm for the  ESMT within a simple 
polygon with O(K log k), where K = m + n. They 

determined 4, 3, 2   subset of each of these terminals inside 
a simple polygon. Steiner tree is obtained from any 

subsets’ vertices. Winter et al.  have provided an exact 
algorithm for the three terminals in a simple polygon in 

time O(K) [5], an exact algorithm for  4 terminal in a 
simple polygon [6],  heuristic algorithm for over 4 terminal 

[7]. The proposed algorithm in this paper can solve the 
Steiner tree in a simple polygon with some obstacles. 
Finally, we compare our results with the data and results 
presented in [13]. This paper is organized as follows: 
Section 2 is dedicated to some basic definitions. The 
proposed algorithm is introduced in section 3. The 
computational results are presented in section 4. The final 
section brings other sections in a conclusion.       

2. Basic definitions  

A polygon P  is simple if it is not self-intersecting and its 
interior	i(p) is not empty and connected. A point P  is said 
to be in P  if p ∈ i(p) ∪ p .A vertex v on P is convex if its 
interior angle is less than 180°. 

Otherwise, it is reflex. A reflex vertex is said to be wide if 
its interior angle is at least 240°. Clockwise successor and 
predecessor vertices of a vertex v are denoted by v� and 
v�, respectively. In order to simplify some proofs, it is 
assumed that v�v and  vv� are not colinear for any v ∈ p	. 
A simple polygon is called a c − kite iff precisely c of its 
vertices is convex. Boundaries of a c − kite  P	between 
two consecutive convex vertices are referred to as sides of 
P . A polygon P	 is weakly-simple if it is not self-
intersecting. In particular, a weakly-simple polygon can 
have empty or disconnected interior. 

The shortest path between two points u and v in a polygon 
P will be denoted by P(u, v). P(u, v) is a unique polygonal 
chain and its interior vertices are reflex vertices of P. A 
line L is said to be an interior tangent of a c-kite P	at a 
touch vertex v ∈ P iff one of the following cases occurs. 

 v is a reflex vertex, and edges v�v and	vv� 
are on the same side of L. 

 v is a convex vertex, and edges  v�v and	vv� 
are on the opposite sides of  L. 

 v�v overlaps with L . 

An interior tangent L with a touch-point v is oriented in 
such a way that the edge vv� is on its left. Two interior 
tangents of a c-kite P are distinct if they have different 
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slopes or different touch vertices.  Consider a reflex 
vertex v of a c-kite P . let q�

�  and q�
�  denote the convex 

vertex that is reached form v by moving counterclockwise 
and (respectively clockwise) on P. Let sv denote an edge 
in p overlapping with an interior tangent of  v . Only one 
of the vertices v� and v� is visible form s. Let q�

�  denote 
the convex vertex that can be reached form v by moving 
counterclockwise on P in v�  is invisible from s, and by 
moving clockwise if v� is invisible from s. if v is convex, 
let q�

� = v . 

An ESMT inside a simple polygon cannot have vertices of 
degree greater than three. Vertices of degree 3 are called 
Steiner points if they are located in the interior of  P . The 
edges incident to Steiner points make 120 °  with each 
other. They are called degenerate Steiner points if they are 
located on the boundary of P. Degenerate Steiner points 
can only occur at wide reflex vertices of P. The reader is 
referred to [8] for basic definitions and properties of  
ESMTs. 

2.1. Polygon Reductions 

Consider a unique polygon P�  inside P  containing the 
terminals Z, and such that its perimeter is as short as 
possible. Provan [9] proved that there always exists an 
ESMT for Z in P completely inP�. Toussaint [10] gave an 
O(n(log n + log k) + k)  algorithm to determine P� . The 
complexity of this algorithm reduces to O(k) if n is fixed. 
P� is sometimes referred to as the geodesic convex hull for 
its polygon and its terminals. 

2.2. Straight skeleton 

In   geometry,   a   straight   skeleton   is   a   method   of 
representing a polygon by a topological skeleton. It is 
similar in  some  ways  to  the  medial  axis  but  differs  in  
that  the skeleton  is  composed  of  straight  line  
segments,  while  the medial  axis  of  a  polygon  may  
involve  parabolic  curves. Straight skeletons were first 
defined  for simple polygons by Aichholzer et al. and 
generalized to planar straight line graphs by  Aichholzer   
and  Aurenhammer   [11,  12].  The straight skeleton of a 
polygon is defined by a continuous shrinking process in 
which the edges of the polygon are moved inwards 
parallel to themselves at a constant speed. As the edges 
move in this way, the vertices where pairs of edges meet 
also move, at speeds that depend on the angle of the 
vertex.  If one of these moving  vertices collides with a 
nonadjacent  edge, the polygon  is  split  in  two  by  the  
collision,  and  the  process continues  in  each  part.  The  
straight  skeleton  is  the  set  of curves traced out by the 
moving vertices in this process [11, 12]. Figure 1 of the 
illustration shows the straight skeleton of a polygon. 

 

 
Figure 1.   Straight skeleton of simple polygon 

3. The Proposed Algorithm Steps 

A simple polygon with m vertices, n terminals and a  of 
obstacle is presented as an input, as shown in Figure 2. 

 

 

Figure 2.   A simple polygon m vertices, n terminals and a of obstacle 

Our proposed algorithm has three steps. 

   Step1. First the geodesic convex hull of the terminals in 
a simple polygon is obtained, which is shown in Figure 3. 

 
Figure 3.   Geodesic convex hull of the terminals in a simple polygon 

When dealing with obstacles, the following procedure is 
conducted:  
Assume that obtaining the shortest distance between two 
terminals of A and B, where there is an obstacle between 
them is intended. First, the points of tangency of A and B 
with the obstacle are obtained, then there are two paths for 
connecting A to B from the points of tangency, which the 
shorter path is selected, as shown in Figure 4. 
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Figure 4.   An obstacle between the two terminals of A and B 

 
    Step2. Draw straight skeleton for the geodesic convex 
hull and find candidates of Steiner points. It is shown in 
Figure 5. 

 

 
Figure 5.  The straight skeleton of geodesic convex hull 

     Step3.  A tree is obtained with the geodesic convex 
hull skeleton which contains candidate Steiner points. 
Non-terminal leaves and connected edges are eliminated 
in this tree which may convert it into several separated 
parts. The shortest distance between two Steiner points is 
obtained using the Kruskal’s algorithm and then the 
Steiner points are connected to each other. The resulting 
tree is Euclidean Steiner minimal tree with obstacle, 
which is shown in Figure 6. 

 

 
Figure 6.  Euclidean Steiner minimal tree with obstacle  

Our algorithm can also handle the geodesic convex hull 
with Obstacles as long as they have the appropriate 
orientation. That means the geodesic convex hull interior 
lays leftwards from all of the line segments, vertices of the 
outer boundary are in counter-clockwise order and the 

vertices of the holes are in clockwise order. An example 
of the straight skeleton of a geodesic convex hull with a 
Obstacle is in Figure 7. 

 

 
Figure 7.  An example of the straight skeleton of a geodesic convex hull 

with a Obstacle 

 

4. Computational Results  

We implemented the proposed algorithm in Delphi 
programming language and performed our experiments 
with examples of Soukup [13]. We considered a convex 
polygon around all the terminals and assumed that there is 
no terminal in the obstacles. Then we compared some of 
our results with optimum results in table 1. The presented 
algorithm provides good results as shown in Table 1.     

 

TABLE 1: PROPOSED ALGORITHM COMPARED WITH SOUKUP EXAMPLES 

Example number                Optimal result Our proposed algorithm 

EX.1 166.44 166.44 

EX.2E 220.53 220.53 

EX.2F 217.78 219.90 

EX.3 159.88 163.80 

EX.4 127.41 130.96 

EX.5 164.83 168.21 

EX.6 127.34 128.71 

 

 

5. Conclusion 

This paper presents an algorithm capable of solving 
Steiner tree problem inside a simple polygon with some 
obstacles in the Euclidean plane. Computational results of 
stated algorithm presented. Resulting algorithm is simple 
in terms of implementation and leads to good results.  
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