

Service Registry: A Key Piece for Enhancing Reuse in SOA

Juan Pablo García-González1, Verónica Gacitúa-Décar2, Dr. Claus Pahl3

1 DATCO,Chile S.A.
2,3 Software Engineering Research Centre, Dublin City University & Lero, Irish

Abstract

One of the promises of adopting a service-oriented

approach in organizations is the potential cost savings that

result from the reuse of existing services. A service

registry is one of the fundamental pieces of service-

oriented architecture (SOA) for achieving reuse. It refers

to a place in which service providers can impart

information about their offered services and potential

clients can search for services. In this article, we provide

advice for implementing an enterprise-wide service

registry. We also discuss open issues in industry and

academia that affect the management of service- repository

information.

1. Introduction

The reuse of services greatly depends on the ability to

describe and publish the offered functionality of the

services to potential consumers (clients). A service registry

allows you to organize information about services and

provide facilities to publish and discover services.[1]

Universal Description Discovery and Integration (UDDI)

and the Web Services Description Language (WSDL)—

together with SOAP— are standards for describing

services and their providers, as well as how services can be

consumed:

 WSDL [2] provides a model and XML format for

describing what a Web service offers. A service

description in WSDL separates abstract-service

functionality from details such as how and where

the service is offered. While the abstract-service

description includes types and an abstract

interface, concrete details include bindings, a

service element that includes all available

implementations of the abstract interface at

endpoints.

 UDDI[3], [4] provides an infrastructure that

supports the description, publication, and

discovery of service providers; the services that

they offer; and the technical details for accessing

those services. A core aspect of UDDI is how it

organizes information about services and the

providers of services. Information entities (UDDI

data) are organized in a data model and stored in

a UDDI service registry. Inquiring (search and

lookup entries) and publication (publish, delete,

and update registry–related information) are core

APIs.

Figure 1 illustrates some relationships between a WSDL

service description and information that is stored in a

UDDI service registry.

Figure 1. Relationships between WSDL and UDDI

Originally, UDDI was conceived to cover both publicly

exposed services and services that were available within

an organization. Currently, most existing implementations

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

1

are internal to organizations. Service publication,

discovery, and (finally) reuse of services is more

complicated in an inter-organizational scenario; for

example, additional legal and commercial agreements are

often needed among parties.

Dedicated (public) UDDI service registries were criticized

for their limitations (among other reasons) during service

inquiry/ discovery. Recently, however, Web search

engines—which could be crawling publicly available

WSDL documents—have raised promising expectations

for discovering publicly available services.[5]

2. Designing an Enterprise Service
Repository

This section proposes some design guidelines to develop

an enhanced enterprise service repository. The focus is on

improving the reuse of services over time in different IT

projects. The aim is to increase service visibility to domain

experts (often, this refers to a business-analyst role) and

enhance service descriptions with practical information for

architects. Business analysts, who have a less technical

background but strong knowledge of the business domain,

are frequently the early designers of new initiatives for

incorporating or modifying the software support at

companies; they play a key role with regard to the reuse of

services.

2.1 Enterprise Services

Enterprise service–based solutions involve different types

of service. Following the separation of concerns that is

addressed by the service-virtualization pattern, [6] services

can act as an intermediate layer between the client and

provider applications of the services. The virtualization

pattern focuses on the abstraction of technical details—

such as service-endpoint location, policy enforcement,

service versioning, and dynamic service-management

information from service consumers— which access an

intermediate service level. Technical concerns are

managed at an implementation level, at which the actual

business logic is implemented.

Based on SOA initiatives in several companies, we can

identify three types of service:

 A business service (BS), which client applications

use for accessing the functionality that is

implemented in provider applications.

 An application service (AS), which can be

consumed by a BS to access the functionality of

the provider applications.

 A business-service extension (BSE), which can

be consumed by a BS to operate on different AS

responses and consolidate a single answer that is

sent to a BS. In turn, the BS delivers the

consolidated response to the client application.

The aggregator pattern [7] is core to the design of

a BSE.

Figure 2 illustrates the main static relations among

elements of an enterprise service–based solution, as well

as their relationship to elements from the virtualization

pattern. A service registry organizes the description of the

three different types of service and their relationships.

Client and provider applications interchange messages that

are mediated by BS, BSE, and AS. The service registry

manages (at the configuration level) the information that

relates the different types of service. The information is

persisted in a service repository and used at runtime by a

BS to answer client requests.

Figure 2. Service-based architecture and its relation to virtualization-

pattern roles

2.2 Example 1

Let us consider a simplified BS that is used for calculating

the total sales that are related to the life-insurance and

group-insurance products of an insurance company. The

total sales that are associated with life-insurance products

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

2

are obtained from a life-insurance legacy application.

Analogously, the total sales that are associated with group-

insurance products are obtained from the group-insurance

legacy application. Each legacy application exposes an AS

(lifeInsurance and groupInsurance, respectively) that

provides the total sales for each type of insurance product.

A BS receives requests from clients who are asking for the

total sales; afterwards, it calls the service registry that has

the information that is required to enforce specific policies

on messages and dependencies to an AS and a BSE.

A BSE operates on the answers of an AS and provides a

single answer to the BS that contains the total sales of the

company. The BS, in turn, delivers this response to the

client application. Figure 3 illustrates the described

interaction.

Figure 3. Main interaction among elements of the service-based solution

from Example 1

2.3 Enterprise Service Registry

The enterprise service registry (ESR) is a core element that

organizes service information and supports the interaction

among enterprise applications that provide and consume

services.

Basic functionalities of an UDDI-based ESR can be

enhanced by using:

 Service-dependencies management.

 Runtime-policy enforcement.

 Service versioning.

 Service-history data (logs) management.

A service repository persists the information and

documentation that are logically managed by the service

registry. Figure 4 illustrates the main information that is

organized in an ESR, persisted in a service repository, and

provided to end users through a Web-based user interface.

Figure 4. Enterprise service registry (ESR)

2.4 Services Descriptions

Services descriptions are core to the service registry. They

determine how services can be discovered and

subsequently reused:

 A BS is described at a high level—often, via

textual descriptions in natural language and

examples that facilitate understanding by business

analysts.

 A BSE and an AS contain more technical details.

A BS is implemented by at least one AS and also

might involve a BSE. To associate a BS to one or

more AS(s) and/or BSE(s), a dependency

mapping is created and managed by the service

registry.

Table 1 describes in more detail the information that is

managed by the service registry:

 The main attributes that describe a BS are shown

at the beginning of Table 1. A BSE and an AS

share attributes (see middle of Table 1). The end

of the table describes binding information that

relates a BS to a BSE and an AS.

 Information that describes services and is

independent of any registry implementation is

shown in the Service information column, while

information that is managed by the service

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

3

registry is shown in the Registry information

column. If information in the Service

information and Registry information columns

is the same, an X appears in the Replicated

information column.

 The remaining columns indicate information that

is relevant to different roles. [8] Business analysts

and solution architects manage information about

business and technical concerns, respectively.

Both roles work at a project or business-unit

scale. Enterprise and infrastructure architects

manage service information from a global

(enterprise-wide) perspective. While enterprise

architects might be interested in managing (for

instance) service versions, infrastructure

architects care about providing the required

infrastructure support to keep services running

with the adequate quality of service (QoS), as

defined in service-level agreements (SLAs).

Table 1. Main service information at the ESR

2.5 Using the Enterprise Service Registry to
Improve Reuse of Services

Based on our experience in a range of projects, providing

simple descriptions about a BS, facilitating its access, and

managing services dependencies have been key to improve

reuse. For this purpose, an ESR was a core element.

 Business analysts who trigger new requirements

for software support can improve their

communication with solution and enterprise

architects by referring to a BS that is described in

the ESR. Based on the descriptions of the BS and

its dependencies to an AS and a BSE, domain

experts become aware of available functionality

at back-end applications. From our experience,

this has facilitated a shift from requirements that

are specified in a vague manner to initial solution

blueprints that comprise orchestrated services

(created by business analysts). Long meetings

between architects and business analysts can be

reduced to short meetings or even telephone calls

that refer only to information at the service

registry.

 Software architects can refine orchestrations that

are depicted in the initial blueprints that are made

by business analysts. Subsequently, they can

agree with enterprise and infrastructure architects

on service versions and infrastructure support.

Again, information at the ESR was central during

the agreement.

 Information about service dependencies helped

infrastructure architects to analyze the impact of

binding new consumers to application services.

This is critical for maintaining SLAs.

 Runtime policy–enforcement configurations at

the service registry allowed specialized treatment

for different client-application requests that were

associated with a single BS—for example,

applying particular validations with regard to

formatting, security, and parameterization.

 In the case of new requirements triggering

modifications to existing services:

 Often, extensions or modifications involved

changes only at the BSE level.

 If an AS or BSE was modified and new versions

were deployed, the version of the associated BS

remained unchanged. (Service versioning is

discussed in more detail in the “Impact of Service

Versioning on Service Registries” section.)

 Only incompatible changes that modify the

business functionality could trigger new BS

versions (in general, a BS is designed with

forward compatibility in mind).

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

4

Among the lessons that were learned from different

projects, we can emphasize the following:

 Decoupling of a BS from an actual

implementation (by using AS(es) and a BSE) is

an effective way of keeping domain experts

separated from technical information, which

facilitates service discovery at the business level.

 BS discovery support is key to enable the reuse of

services beyond a single solution or project—

allowing their use across projects and at an

enterprise-wide scale.

 In practice, when only an AS is presented to

domain experts, it remains almost untouched; that

is, it is rarely reused in further developments.

 Even when new requirements involved

modifications to existing service solutions, the

reuse of a BS has still been strong. This was

facilitated by addressing the required

modifications at the BSE level.

 During legacy-application migration, client

applications kept consuming the same BS.

Changes mostly occurred at the AS level. At the

ESR, AS descriptions and service dependencies

were updated. New projects could reuse a BS

independently when a migration had occurred.

3. Open Issues in Industry and Academia

This section discusses a number of observations in

industry and academia with regard to enhanced service

descriptions, organization of service information in a

service registry, and the role of such a registry to enhance

the reuse of services.

3.1 Strategies for Organizing and Finding
Services in Registries

If service information in an enterprise service registry is

difficult to distinguish because of inadequate organization

or ineffective search mechanisms, the value of that registry

is reduced.

Services categorization can help to distinguish services

and classify them according to one or more categories.

UDDI registries support this through the tModel. The

categorization schemas of UDDI refer to taxonomic

classifications. Taxonomies organize concepts in a

hierarchical structure; multiple taxonomies can apply to a

single UDDI entity. Standard classification schemas are

suggested, such as the United Nations Standard Products

and Services Code (UNSPSC [9]); however, other

standards or internally created taxonomies can also be

used. The UDDI Inquiry API supports different forms of

query, such as browse pattern, drill-down pattern, and

invocation pattern. Queries can refer directly to services,

as well as to service categories.

Similarly to a Web search engine, the browse pattern

allows one to find registry elements by matching

keywords. Although this mechanism automates part of a

service search, the results are limited to the coding

system’s value set and direct value matching. Services

whose description includes similar or related concepts, but

different syntax, cannot be retrieved by using this

approach. Also, during use of different categorization

schemas, the management of overlapping categories can

become expensive. [10] Taxonomy maintenance is an

added load that must be considered during the

implementation of a service registry. Classification

schemas that are not updated can affect the quality of the

discovery results. [11]

The semantic research community has proposed

alternatives to enrich service descriptions semantically and

enhance classification schemas in services registries. Basic

taxonomies can be enriched or replaced by ontologies.

Ontologies structure concepts within a domain and define

their meaning. Axioms constrain possible interpretations

of concepts and reasoning mechanisms that support

inferences from existing data.

According to Küster et al., [12] although semantic

enrichment of services descriptions can improve service

discovery, several issues still must be addressed, such as

reducing the computational cost of reasoning, maintaining

the ontologies, and refining search results to improve

effectiveness.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

5

3.2 Impact of Service Versioning on Service
Registries

When a service has been implemented, changes can

occur—from the implementation itself to parts of the

service description in a service repository. Changes might

aim to improve reuse:

 Implemented services that follow a bottom-up

approach [13] often fulfill particular project

requirements within a domain. When any of these

services becomes a candidate for reuse in a

different context, it usually requires modifications

or extensions.

 Analogously, services that follow a top-down

approach often must be changed (specialized) to

fit in particular contexts.

 Different versioning strategies address different

requirements. A single solution is not likely to be

satisfactory for all situations. WSDL and UDDI

do not define guidelines for versioning services.

Some authors have proposed strategies for service

versioning; most of them relate to backward and

forward compatibility: [14]

 A backward-compatible version refers to the

ability to support consumers of older versions of

a service.

 A forward-compatible version refers to the ability

to adapt to unknown future requests that are

intended for newer versions of the service. This

type of compatibility involves not only a service-

versioning strategy, but also a service-design

strategy that is related to changeability.

Often, new service versions are replications of a previous

version that have additional or modified elements. New

versions are named differently (by using some naming

convention), and their description is stored in the registry

as a new entry. Juric et al. [15] propose extensions to

WSDL and UDDI for service versioning. The approach

addresses run-time and development-time versioning.

Efficiency at the code level is addressed by allowing

multiple versions of a service to refer to the same

codebase. Additionally, notifications about new and

deprecated versions are communicated to consumers.

Traceability support is provided to track changes. This

academic research promotes the reuse of services and

keeps the complexity of a service registry manageable.

3.3 Service-Usage Information for Enhancing
Service Description and Discovery

The history of service usage can be an interesting source

of information—not only to re-create the actual behavior,

[16] but also for service discovery. Stored service usage–

history (logs) can help to categorize services according to

the user or how services have behaved over time. Let us

consider a service description that indicates a specific

performance level in its contract; however, the actual

measured performance in a given timeframe (extracted

from logs) is lower. This information could be used during

service discovery; a service that had lower-than-expected

performance levels would be discarded from the search.

Statistically extracted information about how services

behave against historic interactions can help to build less

biased rankings and make service discovery more precise;

however, an infrastructure for the constant monitoring of

services and storing of the history information must be

provided. Based on the service history, probabilities can be

assigned to quantify uncertainty. Clark et al. [17] consider

uncertainty with regard to the configuration of a service-

based system, the rate parameters of system components,

and the duration of events. An uncertainty model is used to

predict system performance under increased demand. This

type of analysis is fundamental when one is dimensioning

the service support infrastructure. Historical data about

individual services helps to predict the performance of an

entire system.

Offer and demand in an inter-organizational scenario are

subject to how much parties trust one another. “Trust in

others” is one of several criteria for assigning reputation—

witness reputation [18] —to publicly available services. If

company X knows that a service is being used or was

positively rated for company Y, whom X trusts, the

reputation of that service would increase from the point of

view of X. One associated problem is the eventual bias for

positive ratings, unfair ratings, and the variations of

quality between ratings. [19]

3.4 Sufficiency of WSDL Descriptions to Find
Services for Composition Efficiently

Services are reused not only by client applications, but

also by other services in a service composition. A service

composition can provide a more coarse-grained

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

6

functionality and be closer to a business need. One

problem when finding a service (useful in a service

composition) is the need to verify if the services that are

involved are able to “talk” to one another—that is, if the

associated message-interchange protocol among them is

compatible. A basic requirement for compatibility is

deadlock-freeness. Moreover, the message syntax and

semantics should be compatible.

Figure 5 illustrates a typical example of incompatibility at

the protocol level between two parties. In the figure, a

Buyer party offers a buyProduct service, and a Seller party

offers a sellProduct service.

Figure 5. Example of incompatibility at protocol level between two

parties

To automate a hypothetical sale process, the message-

interchange protocol between buyProduct and sellProduct

should be compatible. However, Figure 5 illustrates that

the Seller expects a payment before sending the product,

and the Buyer expects the product before sending the

payment.

When more and more services are offered and advertised

in repositories, there are more chances of satisfying a

service demand by composing existing services. However,

mediation at the protocol level might be required.

Matchmaking conflicts at the message and/or conversation

level(s) can be solved—to a certain degree— by a

mediator component. [20], [21] However, verifying and

solving compatibility among services at the behavioral

level is expensive; it involves the (expensive) exploration

of possible states of the services during interaction. To

increase reuse here, we need efficient mechanisms for

finding compatible services.

For instance, instead of directly publishing the behavior of

a service in a repository, a provider can publish a

“summarized description” of the expected behavior of all

compatible services to service (compatibility refers to

deadlock-freeness). The “summarized description” is

called an “operating guideline [22]” and allows the hiding

of implementation details, while exposing enough

information to find compatible partners. Checking if a

service can be composed with others is reduced to

checking if a graph-based representation of the potential

partner is a sub graph of the “operating guideline,” which

is less expensive than exploring all possible states of the

services.

4. Conclusions

To improve the reuse of services at the enterprise level,

architects must define a strategy for publishing and

providing facilities to access services information. For this

purpose, an enterprise service registry is a key piece.

Information about services can be organized at the

registry, and basic functionality can be enhanced—

including, for instance, functionality for service

versioning, management of service dependencies, and

enforcement of runtime policy. In this article, we have

provided some design guidelines for enhancing an

enterprise service registry to improve the reuse of

enterprise services. We have also discussed some open

issues in industry and academia with regard to the design

and implementation of service registries and associated

aspects that are required to describe and organize services

information.

Resources

1. Pijanowski, Keith. “ Visibility and Control in a

Service-Oriented Architecture.” MSDN, May 2007.

2. W3C.org. Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language.

3. UDDI.org. UDDI Version 3.0.2. UDDI Spec Technical

Committee Draft, October 19, 2004.

4. Microsoft Corporation. “ UDDI Specification Index

Page.” MSDN, July 2009.

5. Al-Masri, Eyhab, and Qusay H. Mahmoud. “

Investigating Web Services on the World Wide Web.”

WWW 2008: Web Engineering— Web Service

Deployment Track, April 21–25, 2008, 795–804.

6. Madrid, Chris. “ SOA Realization Through Service

Virtualization.” SOA Magazine, September 3, 2007.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

7

7. Hohpe, Gregor, and Bobby Woolf. Enterprise

Integration Patterns. Boston: Addison-Wesley, 2004.

8. Cardinal, Mario. “ The Hidden Roles of Software

Architects: The Three Types of Architect.” MSDN,

March 2008.

9. UNSPSC.org. “ UNSPSC Codeset.” (Managed by the

Electronic Commerce Code Management Association

(ECCMA).) August 2007.

10. Klein, Michel. “Combining and Relating Ontologies:

An Analysis of Problems and Solutions.” Proceedings

of Workshop on Ontologies and Information Sharing at

17th International Joint Conference on Artificial

Intelligence (IJCAI-01), 2001, 53–62.

11. Hepp, Martin, Joerg Leukel, and Volker Schmitz. “A

Quantitative Analysis of eClass, UNSPSC, eOTD, and

RNTD: Content, Coverage, and Maintenance.”

Proceedings of IEEE International Conference on e-

Business Engineering (ICEBE’05), 2005, 572–581.

12. Küster, Ulrich, Holger Lausen, and Birgitta König-

Ries. “Evaluation of Semantic Service Discovery: A

Survey and Directions for Future Research.” Emerging

Web Services Technology. Volume II, 2008, 41–58.

13. Erl, Thomas. Service-Oriented Architecture: Concepts,

Technology, and Design. Prentice Hall Service-

Oriented Computing Series from Thomas Erl, 2004.

14. Parrish, Allen, Brandon Dixon, and David Cordes. “A

Conceptual Foundation for Component-Based

Software Deployment.” Journal of Systems and

Software. Vol. 57, Issue 3, July 2001, 193–200.

15. Juric, Matjaz B., Ana Sasa, Bostjan Brumen, and Ivan

Rozman. “WSDL and UDDI Extensions for Version

Support in Web Services.” Journal of Systems and

Software. Vol. 82, Issue 8

(doi:10.1016/j.jss.2009.03.001), August 2009, 1326–

1343.

16. van der Aalst, W. M. P., and A. J. M. M Weijters.

“Process Mining: A Research Agenda.” Computers in

Industry. Vol. 53, Issue 3 (doi:

10.1016/j.compind.2003.10.001), April 2004, 231–244.

17. Clark, Allan, Stephen Gilmore, and Mirco Tribastone.

“Quantitative Analysis of Web Services Using

SRMC.” SFM. Vol. 5569, 2009, 296–339.

18. Huynh, Trung Dong, Nicholas R. Jennings, and Nigel

R. Shadbolt. “An Integrated Trust and Reputation

Model for Open Multi-Agent Systems.” Journal of

Autonomous Agents and Multi-Agent Systems. Vol. 13,

Issue 2, March 2006, 119–154.

19. Jøsang, Audun, Roslan Ismail, and Colin Boyd. “A

Survey of Trust and Reputation Systems for Online

Service Provision.” Decision Support Systems. Vol. 43,

Issue 2, March 2007, 618–644.

20. Dustdar, Schahram, and Wolfgang Schreiner. “A

Survey on Web Services Composition.” International

Journal of Web and Grid Services (IJWGS). Vol. 1,

Issue 1, 2005, 1–30.

21. Li, Xitong, Yushun Fan, Jian Wang, Li Wang, and

Feng Jiang. “A Pattern-Based Approach to

Development of Service Mediators for Protocol

Mediation.” Proceedings of the Seventh Working

IEEE/IFIP Conference on Software Architecture

(WICSA 2008), February 2008, 137–146.

22. Kaschner, Kathrin, Peter Massuthe, and Karsten Wolf.

“ Symbolic Representation of Operating Guidelines for

Services.” Petri Net Newsletter. Vol. 72, April 2007,

21–28.

Juan Pablo García-González is a senior software developer and
chief architect at DATCO Chile S.A. He has been involved in
numerous software projects involving service-based solutions. In
addition to their regular projects, he and his team are working on
the creation of innovative service-centric mobile solutions for the
banking industry.

Veronica Gacitua-Decar is a postgraduate researcher at the
School of Computing, Dublin City University, and Lero - the Irish
Software Engineering Research Centre. Her research is focused
on the development of tools and methods for designing process-
centric service architectures. Previously, she worked as an IT
architect in a large mining company.

Dr. Claus Pahl is a senior lecturer at the School of Computing,
Dublin City University, where he is leader of the Software and
Systems Engineering group. He is also involved in Lero - the Irish
Software Engineering Research Centre, as well as the Centre for
Next Generation Location (CNGL).

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

8

	Abstract
	1. Introduction
	2. Designing an Enterprise Service Repository
	2.1 Enterprise Services
	2.2 Example 1
	2.3 Enterprise Service Registry
	2.4 Services Descriptions
	2.5 Using the Enterprise Service Registry to Improve Reuse of Services

	3. Open Issues in Industry and Academia
	3.1 Strategies for Organizing and Finding Services in Registries
	3.2 Impact of Service Versioning on Service Registries
	3.3 Service-Usage Information for Enhancing Service Description and Discovery
	3.4 Sufficiency of WSDL Descriptions to Find Services for Composition Efficiently

	4. Conclusions
	Resources

