

Is SOA Being Pushed Beyond Its Limits?

Grace A. Lewis

Software Engineering Institute, Carnegie Mellon University, United States

Abstract
 This article presents some of the characteristics of future

service-oriented systems. Also, it focuses on a set of architecture

and design drivers for these future service- oriented systems that

can help meet new expectations without sacrificing the loosely

coupled, stateless, standards-based characteristics that have

driven SOA adoption in many contexts. The article concludes

with thoughts on the key role of the architect in the service-

oriented systems-development process.

Keywords: service-oriented systems

1. Introduction

It is clear that service-oriented architecture (SOA) is

having a substantial impact on the way in which software

systems are developed. According to a 2007 Gartner

Group report, 50 percent of new mission-critical

operational applications and business processes were

designed in 2007 around SOA, and that number will be

more than 80 percent by 2010. Despite recent news that

SOA adoption rates are falling and that “SOA is dead,”

Forrester Group recently reported that SOA adoption is

increasing across all of its vertical-industry groups. The

reality is that SOA is currently the best option available for

systems integration and leverage of legacy systems.

SOA is a way of designing, developing, deploying, and

managing systems, and it is characterized by coarse-

grained services that represent reusable business

functionality. Service consumers compose applications or

systems by using the functionality that services provide

through standard interfaces.

At a high level:

- Services provide reusable business functionality.

- Service consumers are built by using the functionality

from available services. Service-interface definitions are

first-class artifacts.

- There is a clear separation between the service interface

and service implementation that come from the legacy

systems, external systems, or code that was built

specifically for this purpose.

-An SOA infrastructure enables the discovery,

composition, and invocation of services.

-Protocols are predominantly, but not exclusively,

message-based document exchanges.

From a more technical point of view, SOA is an

architectural style or design paradigm; it is neither a

system architecture nor a complete system. As an

architectural style, it is characterized by a set of

components and connectors, situations in which the style

is applicable, and benefits that are associated with

implementing the style.

If it is implemented correctly, SOA adoption can provide

business agility, reuse of business functionality, and

leverage of legacy systems for an organization. Many

organizations recognize these potential benefits and are

adopting SOA—some more successfully than others. SOA

has indeed “crossed the chasm,” [1] according to a recent

Software AG user survey in which 90 percent of the

respondents claim to have made some commitment to

SOA adoption [2].

However, as with any technology, as SOA is adopted

within organizations and becomes a mainstream paradigm

for systems development, the requirements and

expectations that are placed on service orientation

increase. What was initially an approach for asynchronous

document-based message exchanges now has

performance, availability, reliability, security and other

expectations of traditional distributed systems. As a result,

the loosely coupled, stateless, standards-based nature of

the relationship between service consumers and service

providers in service-oriented systems is changing, so as to

meet these new requirements. In addition, global

enterprises and the emerging market of third-party services

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

17

that are being made available through the Cloud are also

placing expectations on service-oriented system

architecture and design.

The first part of this article presents some of the

characteristics of future service-oriented systems. The

second part focuses on a set of architecture and design

drivers for these future service-oriented systems that can

help meet new expectations without sacrificing the loosely

coupled, stateless, standards-based characteristics that

have driven SOA adoption in many contexts. Finally, the

article concludes with thoughts on the key role of the

architect in the service-oriented systems-development

process.

2. Future Service-Oriented Systems

Between 2005 and 2007, multiple surveys were conducted

by organizations such as Forrester, Gartner, and IDC that

showed that the top drivers for SOA adoption were mainly

internally focused: application integration, data

integration, and internal process improvement. This fact is

changing. A recent survey published by Forrester shows

that the number of organizations that are currently using

SOA for external integration is approximately one third of

the surveyed organizations [3]. While the percentage of

externally focused SOA applications is still a minority,

this percentage has been growing, and the trend will

continue as organizations look at SOA adoption for

supply-chain integration, access to real-time data, and cost

reduction through the use of third-party services via the

Cloud or Software as a Service (SaaS). As organizations

expand their systems to cross organizational boundaries,

the requirements on their systems also expand—from

consumer, provider, and infrastructure perspectives. What

follows are some requirements that will be typical of these

future (or even current) service-oriented systems.

2.1 Security

The security threats for service-oriented systems are not

new or different; it is the level of exposure that is greater.

Service-oriented systems have an unknown and dynamic

attack surface. Attack surface refers to the set of ways in

which an adversary can exploit vulnerabilities and

potentially cause damage. An attack surface can be

measured in terms of three kinds of resources that are used

in attacks on the system: methods (for example, an API),

channels (for example, sockets), and data (for example,

input parameters). The greater the number of resources

that are accessible for attack, the greater the attack surface

and, therefore, the more insecure the software environment

[4]. From a more global perspective of security, issues

such as identity management, dynamic secure-service

composition, and trust in third-party services become

important requirements in this type of system.

2.2 Runtime Monitoring and Adaptation

Runtime monitoring of systems is a common practice for

determining the health of a system. SOA infrastructures

can be configured to gather certain measures during

system execution, and tools can be integrated into the

system to produce reports and alerts if measures cross

certain thresholds. Runtime adaptation refers to the

capability of the system to adjust itself at runtime when

these thresholds are crossed, so as to continue to meet

quality requirements. For example, a system might start an

additional instance of a service under particular load

conditions or restrict access to a service if there is a

suspicion that the security of the system has been

compromised. These actions are possible when there is full

control over a system; however, when services belong to

third parties, there is much less control, and it becomes

difficult to weave and consolidate the different logs that

are emitted from different sources to paint an overall

picture of the system.

2.3 Dynamic Binding

The word dynamic is often used to describe the binding

between service consumers and services. There are various

degrees of dynamism. At the lower end of the spectrum is

late binding of a proxy service to a specific service

instance that depends on user context or load-balancing

policies. At the higher end of the spectrum is fully

dynamic binding in which service consumers are capable

of querying service registries at runtime, selecting the

“best” service from the list of returned services, and

invoking the selected service—all at runtime, and without

human intervention. Late binding is a common, out-of-the-

box feature of many commercial and open-source SOA

infrastructures, such as an enterprise service bus (ESB).

Fully dynamic binding, on the other hand, requires

semantically described services that use an ontology that is

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

18

shared between service consumers and service providers.

Semantic Web Services represent an active area of

research, as well as an unsolved problem that is not yet

ready for large-scale deployment.

2.4 Multiple Consumers and Consumer Devices

As service-oriented systems start crossing organizational

boundaries, the variety of service consumers will increase.

Services will have to deal with heterogeneous service-

consumer development and computing platforms. The

proliferation and increasing power of handheld devices,

along with the need for access to real-time data, are

driving business applications to run on resource-

constrained devices such as handheld devices, PDAs, and

cell phones. In the case of third-party service providers,

the fact that service consumers might be unknown adds an

additional requirement of anticipating potential consumer

profiles and usage patterns.

2.5 Coexistence with Other Architectural
Paradigms and Technologies

Because Web Services are the main standards-based

technology that is available today for implementation of

service-oriented systems, a common misconception is that

Web Services and SOA are the same. In fact, Web

Services are only one potential approach to SOA

implementation. In a traditional Web Services

environment, service consumers interact with services via

XML-messages that are encoded by using SOAP over

HTTP in a request/response manner. While this is

appropriate in many contexts, especially in enterprise

contexts, it might not be appropriate in other contexts of

high-performance or real-time requirements. For example,

certain business processes or real-time workflows might be

too dynamic and complex to be modeled by traditional

sequential processing methods. In this case, event-driven

SOA provides a potential solution by combining the

traditional SOA request/response paradigm with the event-

driven architecture (EDA) event publish/subscribe

paradigm.

Another example is high-performance and real-time

systems that are usually tied to requirements for higher

information bandwidth, as well as much lower latencies or

delays on the information. As demands become more real-

time, the need for performance, predictability, and load

balancing tips the scale towards point-to-point (P2P),

tightly coupled architectures, as opposed to more loosely

coupled architectures. Common SOA implementations that

are based on HTTP, such as Web Services, might not be

acceptable, because HTTP is not reliable, has limited

bandwidth, introduces very high latencies, and cannot

buffer, queue, and deliver messages to systems that are

either temporarily unavailable or will join at a later time.

For this reason, real-time support in SOA environments

focuses on EDAs and publish/ subscribe systems as a way

to support real-time requirements, yet maintain the loosely

coupled nature of service-oriented systems.[5], [6]

As service-oriented systems depart from what is currently

standardized—mainly, Web Services (whether WS* or

REST)—there will be trade-offs. For example,

maintainability of the system becomes more difficult when

there are multiple architecture paradigms and when tool

availability decreases.

2.6 Governance

The requirement for governance will not come as an

explicit requirement; however, as systems start to cross

organizational boundaries, the need for governance

becomes even more important. SOA governance is the set

of policies, rules, and enforcement mechanisms for

developing, using, and evolving service-oriented systems,

as well as for analysis of their business value. It includes

policies and procedures, roles and responsibilities, design-

time governance, and run-time governance [7], [8], [9].

Design-time governance includes elements such as rules

for strategic identification of services, development, and

deployment of services; reuse; and migration of legacy

systems. It also enforces consistency in the use of

standards, SOA infrastructure, and processes. Run-time

governance develops and enforces rules to ensure that

services are executed only in ways that are legal, and that

important run-time data is logged. From a life- cycle point

of view, design-time governance applies to early activities

such as planning, architecture, design, and development.

Run-time governance applies to the deployment and

management of service-oriented systems. In a multi

organizational environment, governance has to be

extended to include policies and procedures for the

identification and binding to external services and the

establishment and monitoring of service-level agreements

(SLAs) between service providers and consumers.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

19

3. Architecture and Design Drivers for
Future Service-Oriented Systems

The requirements for future service-oriented systems

present a challenge to system architects. Ideally, the goal is

to meet new expectations without sacrificing the loosely

coupled, stateless, standards-based characteristics that

have driven SOA adoption in many contexts. What follows

are some architecture and design drivers that will have to

be embedded into these systems.

3.1 Context Awareness

In a context-aware SOA environment, services can be

selected and adapted every time in accordance with the

user and invocation- context requirements and profiles—

for example, provision of a service that:

-Has different performance, reliability, or security

characteristics, according to who invokes the service and

from where it is invoked.

-Returns information that is based on the language, time

zone, and invocation environment of the user.

-Returns different views of data, depending on the

characteristics of the device from where it is invoked.

To enable loose coupling between service consumers and

services, the system architecture will have to abstract the

complexity and multiplicity of implementation options.

Architects will have to make trade-offs, such as whether

services will expose a single standardized interface and a

robust infrastructure will handle all of the necessary

transformations and routing, or whether multiple service

interfaces are exposed, which places fewer requirements

on the infrastructure (probably, at the expense of

maintainability). From a technology perspective, there is

currently no standard for representing user context, which

means that design decisions must be made to determine

when and how user-context information is obtained [8].

3.2 Instrumentation for Runtime Monitoring and
Adaptation

If a service-oriented system includes runtime monitoring

and adaptation, all system elements must be instrumented

so as to gather the right measures and receive the proper

“orders” on what to do when thresholds are crossed. From

an architecture and design perspective, this translates into

architectural constructs for measurement and

instrumentation in the SOA infrastructure, services, and

even service consumers. Ideally, these constructs should

be highly configurable so as to accommodate SLA

changes and changes in service providers. For example,

recent research shows that to design self-adaptive systems,

the feedback loops that control self-adaptation must

become first-class entities at the expense of added

complexity [9].

3.3 Service Usability

In a growing market of third-party service brokers and

providers, the aspects that can make a service more or less

attractive include functionality, attached SLAs, and

usability. Characteristics that make a service more usable

or less usable can include interface design, options in

messaging protocols, add-ons (such as test cases and test

instances), and any other metadata that can tell consumers

more about the service. Therefore, the task of service-

interface design extends beyond simply defining the

messages that are exchanged between providers and

consumers. For example, architectural constructs would

have to be put in place to support advanced service

registries, multiple messaging options, test instances, SLA

monitoring, and any other characteristic that contributes to

the perception of service usability.

3.4 Federation

As service-oriented systems grow in size, the

centralization of certain aspects might become a

bottleneck. Federation can be a solution to this problem. In

this context, federation refers to predefined agreements on

aspects of the system that allow the autonomy of

individual components.

Some aspects of service-oriented systems that might

require federation in large-scale settings are:

-Identity management. This is the aspect that is most

commonly associated with federation in SOA

environments. Federated identity management means that

there is a cooperative contract that has been set up among

multiple identity providers and uses a decentralized

approach, so that an identity in one of the identity

providers is recognized by other identity providers in the

federation [12]. From a consumer perspective, this means

not having to log in to every single system that is involved

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

20

in the execution of a particular business process or

workflow. Some of the challenges of federated identity

management include trust, translation among multiple

standards, and synchronization.

-SOA infrastructures. In large-scale service-oriented

systems that span multiple organizations, it is unlikely that

all organizations will have the same SOA infrastructure. In

this case, federation would allow participating

organizations to maintain their SOA infrastructures, while

shared aspects such as policy management and governance

mechanisms are agreed upon, propagated throughout the

system, and implemented locally.

-Service registries. Federated service registries allow

registries to appear as a single, virtual registry and

individual organizations to retain local control over their

own registries.

Regardless of the aspect of the system that is federated,

there will need to be architectural constructs for

establishing agreements, virtualization, and

synchronization upon changes.

3.5 Automated Governance

The key to governance implementation is adding control to

a system without creating a lot of extra work to its

developers and users.

The approach is governance automation. The burden of

ensuring compliance and enforcement gets pushed to the

SOA infrastructure. There are tools and SOA

infrastructures in which some governance automation is

built in; in the end, however, the goal is the ability of an

organization to ensure that development and deployment

adhere to its own policies and standards, which might not

be what is codified in existing tools.

Some aspects of governance that can be automated are:

-Workflows for service identification.

-Service-deployment procedures.

-Compliance with regulations such as the Health Insurance

Portability and Accountability Act (HIPAA) and Sarbanes-

Oxley.

-Compliance with internal security policies.

-Runtime measurements and logging.

-SLA management.

Architectural constructs will need to be developed for

aspects of SOA governance that are critical for SOA

implementation and are not covered (or are implemented

differently) by the existing SOA infrastructure and SOA

governance tools. In multiorganizational settings, the

challenge is how to deal with conflicting policies and

procedures among organizations.

3.6 Specialized SOA Design Patterns

In software engineering, a design pattern is a general

reusable solution to a commonly occurring problem in

software design. Gamma et al. produced a set of design

patterns for object-oriented systems that triggered the

usage of the term in software design [10].

Since then, design patterns have been produced for

different types of systems, including service-oriented

systems [11].

Given the expectations that are being placed on service-

oriented systems, architects will have to build and research

patterns to address the expectations of future service-

oriented systems. This includes patterns for:

 Service orientation in multi organizational

environments.

 Embedding system qualities into SOA

infrastructures.

 Service-interface design.

 Integration with other technologies.

4. Conclusions

SOA is potentially being stretched beyond its limits. What

was initially an approach for asynchronous document-

based message exchanges now has performance,

availability, reliability, security, and other expectations of

traditional distributed systems. To solve this problem,

multiple specifications and standards have been proposed

and created, middleware products are becoming more

robust, and the community has started to embrace terms

such as event-driven SOA and real-time SOA. Therefore,

the loosely coupled, stateless, standards-based nature of

the relationship between service consumers and service

providers in service-oriented systems is changing, so as to

meet these new requirements. In addition, global

enterprises and the emerging market of third-party services

that are being made available through the Cloud are

placing new expectations on service-oriented system

architecture and design.

SOA is not a “one-size-fits-all” solution. As an

architectural style, SOA is an appropriate solution in some

situations; however, there are situations in which it is not

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

21

appropriate or it has to be used in conjunction with other

technologies to meet service qualities. The architect of

future service-oriented systems is going to play a crucial

role in determining what expectations can or cannot be met

by SOA adoption, and where trade-offs can be made for

the benefit of the organization and the accomplishment of

system qualities.

- Early, contextual technology evaluation — As the use

of SOA for external integration and the expectations of

SOA adoption increase, many promises will be made on

the benefits of SOA in these scenarios that will probably

not be validated until implementation. The role of the

architect is to perform early, contextual technology

evaluation and continuous technology scouting that can

lead to more informed decisions on what parts of the

system will benefit from SOA technologies [13].

- Architecture trade-off analysis —It is well known that

trade-offs must be made in systems, because the

accomplishment of a certain quality is often at the expense

of another quality. Common examples of trade-offs are

performance versus modifiability, availability versus

safety, security versus performance, and interoperability

versus cost.14 The use of service orientation in systems

that have high system-quality requirements will require

architectural trade-offs at the expense of loose coupling

and flexibility. If the added overhead for a service-oriented

system to meet quality requirements comes at the expense

of the characteristics for which SOA is known, the

decision to use service- oriented concepts should be

reevaluated. An architecture analysis and evaluation

method that is guided by business drivers and performed

via scenarios in which the usage of SOA technologies is

key can also help an architect make better, early, and

informed decisions.

Finally, as service-oriented systems start to cross

organizational boundaries, architects will have to

reevaluate the use of SOA as an architectural style in these

systems or to architect their systems in such a way that

qualities are met without having to sacrifice the

characteristics that have made SOA a worthwhile

technology to adopt.

 References

[1] This term was coined by Geoffrey A. Moore in his

book Crossing the Chasm: Marketing and Selling High-

Tech Products to Mainstream Customers (Rev. ed. New

York: Collins Business Essentials, 2006) and refers to the

chasm that exists between visionaries (early adopters) and

pragmatists (early majority) from a technology-adoption

perspective.

[2] Softwareag.com. Software AG, Summer 2008.

[Accessed July 13, 2009.]

[3] Forrester.com. Forrester, February 2009.

[4] Manadhata, Pratyusa K., Kamie M. C. Tan, Roy A.

Maxion, and Jeannette M. Wing. CMU Technical Report

CMU-CS-07-146, August 2007.

[5] Pardo-Castellote, Gerardo. SOA World Magazine,

November 2007. [Accessed July 13, 2009.]

[6] Joshi, Rajive. Real-Time Innovations, Inc., August

2007.

[7] Simanta, Soumya, Ed Morris, Grace A. Lewis, Sriram

Balasubramaniam, and Dennis B. Smith. Software

Engineering Institute, June 2009. [Accessed July 13,

2009.]

[8] Kontogiannnis, Kostas, Grace A. Lewis, and Dennis B.

Smith. “A Proposed Taxonomy for SOA Research.”

In FSOA 2007). Software Engineering Institute, June

2008. [Accessed July 13, 2009.]

[9] Brun, Yuriy, Giovanna Di Marzo Serugendo, Cristina

Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi

Müller, Mauro Pezzè and Mary Shaw. Lecture Notes in

Computer Science Hot Topics, Volume 5525, 2009.

[10] Gamma, Erich, Richard Helm, Ralph Johnson, and

John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-

Wesley, 1994.

[11] Erl, Thomas. SOA Design Patterns. Upper Saddle

River, NJ: Prentice Hall, 2009.

[12] Balasubramaniam, Sriram, Soumya Simanta, Ed

Morris, Grace A. Lewis, and Dennis B. Smith. “Identity

Management and its Impact on Federation in a System of

Systems Context.” Proceedings of the 2009 3rd Annual

IEEE Systems Conference, 2009.

[13] Lewis, Grace A., and Lutz Wrage. Software

Engineering Institute, June 2005. [Accessed July 13,

2009.]

[14] Clements, Paul, Rick Kazman, and Mark

Klein. Evaluating Software Architectures: Methods and

Case Studies. Boston, MA; London: Addison-Wesley,

2001.

Grace Lewis is a Senior Member of the Technical Staff at the
Software Engineering Institute (SEI) in Pittsburgh, PA. Currently,
she is the lead for the System of Systems Engineering team within
the Systems of Systems Practice (SoSP) initiative in the Research,
Technology, and Systems Solutions (RTSS) program. Her current

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

22

interests and projects are in service-oriented architecture (SOA),
technologies for systems interoperability, characterization of
software-development life-cycle activities in systems of systems
environments, and establishing an SOA research agenda. Grace’s
latest publications include multiple reports and articles on these
subjects, as well as a book in the SEI Series in Software
Engineering. She is also a member of the technical faculty for the
Master in Software Engineering program at Carnegie Mellon
University (CMU). Grace holds a B.Sc. in Systems Engineering; an
Executive MBA from Icesi University in Cali, Colombia; and a
Masters in Software Engineering from CMU.

This Article is copyrighted by Carnegie Mellon University and is subject to the
Software Engineering Institute’s Terms of Use found at
http://www.sei.cmu.edu/.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

23

	1. Introduction
	2. Future Service-Oriented Systems
	2.1 Security
	2.2 Runtime Monitoring and Adaptation
	2.3 Dynamic Binding
	2.4 Multiple Consumers and Consumer Devices
	2.5 Coexistence with Other Architectural Paradigms and Technologies
	2.6 Governance

	3. Architecture and Design Drivers for Future Service-Oriented Systems
	3.1 Context Awareness
	3.2 Instrumentation for Runtime Monitoring and Adaptation
	3.3 Service Usability
	3.4 Federation
	3.5 Automated Governance
	3.6 Specialized SOA Design Patterns

	4. Conclusions
	References

