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Abstract 
Ordinary differential equation (ODE) systems are commonly 

used many different fields. The de-facto method to implement an 

ODE system in Python programming using SciPy requires the 

entire system to be implemented as a single function, which only 

allow for inline documentation. Although each equation can be 

broken up into sub-equations, there is no compart-mentalization 

of sub-equations to its ODE. A better method will be to 

implement each ODE as a function. This encapsulates the sub-

equations to its ODE, and allow for function and inline 

documentation, resulting in better maintainability. This study 

presents the implementation 11 ODE solvers that enable each 

ODE in a system to be implemented as a function. Three 

enhancements will be added. Firstly, the solvers will be 

implemented as generators to allow for virtually infinite 

simulation and returning a stream of intermediate results for 

analysis. Secondly, the solvers will allow for non-ODE-bounded 

variables or solution vector to improve code and results 

documentation. Lastly, a means to set upper and lower boundary 

of ODE solutions will be added. Validation testing shows that the 

enhanced ODE solvers give comparable results to SciPy’s default 

ODE solver. The implemented solvers are incorporated into 

COPADS repository (https://github.com/copads/copads). 

 

Keywords: ODE solvers; system of ODEs; Python; 

Documentation; one-ODE-one-function 

1. Introduction 

Ordinary differential equation (ODE) is an important 

mathematical tool in many fields [1], especially in 

modeling, as it describes the rate of change of one variable 

with respect to another variable. The integral of an ODE 

results in the analytical form of equation. However, 

symbolic integration of an ODE may be difficult and 

numerical integration is usually performed. An ODE 

solver is an algorithm to perform numerical integration on 

an ODE. When a set of ODEs describing different is 

related to a common underlying variable, such as time, it 

becomes a system of ODEs and relationship between 

different variables can be examined.  

 

Almost all programming languages will have tools or 

libraries to implement ODE as a single equation or as a 

system and solving the ODE(s). In Python programming, 

the standard way of writing ODE systems in SciPy [2] and 

Odespy [3] is to implement one or more ODEs within a 

single function. Using a simple 3-equation ODE to model 

zombie invasion [4] as an example, the following are 

means of writing the ODEs in SciPy: 

 
def example1(y, t): 

    human = birth - \ 

transmission*y[0]*y[1] - death*y[0] 

    zombie = transmission*y[0]*y[1] + \

 resurect*y[2] - destroy*y[0]*y[1] 

    dead = death*y[0] + \ 

destroy*y[0]*y[1] -  resurect*y[2] 

    return [human, zombie, dead] 

 

def example2(y, t): 

    f = [birth - transmission*y[0]*y[1] - \ 

   death*y[0], 

         transmission*y[0]*y[1] + \ 

   resurect*y[2] - destroy*y[0]*y[1], 

         death*y[0] + destroy*y[0]*y[1] - \ 

         resurect*y[2]] 

    return f 

 

However, standard means of writing ODEs in SciPy [2] as 

shown above present two issues. Firstly, it is common to 

have ODEs comprising of many constituent functions. 

This will result in equations spending multiple lines and 

possibly across multiple pages, which is difficult to read. 

Secondly, it does not allow for effective documentation. 

As a result, a large system of ODEs written in SciPy’s 

method will be difficult to read and usually suffer from the 

lack of ample documentation. 

 

An improved solution is to allow users to implement each 

ODE as a separate function, allowing for function-level 

documentation that is compatible to documentation 

generators, such as Epydoc (http://epydoc.sf.net) or Sphinx 

(http://sphinx-doc.org). This is followed by consolidating 

individual ODEs into a system of ODEs using a data 
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structure, such as a list, before solving. In this case, the 3 

ODEs in Munz et al. [4] can be written as: 

 
def human(t, y): 

    ‘’’Modeling the number of remaining  

    humans. Infected represents the number  

    of humans infected by existing zombies  

    (zombified). Dead represents natural  

    (non-zombified) deaths.‘’’ 

    infected = transmission * y[0] * y[1] 

    dead = death * y[0] 

    return birth - infected - dead 

def zombie(t, y): 

    ‘’’Modeling the number of zombies.  

    Newly infected represents the number of  

    new additions as humans are infected by  

    existing zombies (zombified). Resur- 

    rected represents revival of the dead.  

    Destroyed represents the number of  

    zombies destroyed by humans.‘’’ 

    newly_infected = transmission * \ 

     y[0] *  y[1] 

    resurrected = resurrect * y[2] 

    destroyed = destroy * y[0] * y[1] 

    return newly_infected + \ 

resurrected - destroyed 

def dead(t, y): 

    ‘’’Modeling the total number of dead.  

    Natural death represents natural (non- 

    zombified) deaths of humans. Destroyed  

    zombies represent the number of zombies  

    destroyed by humans. Created zombies  

    represents revival of all dead, be it  

    from natural death or destroyed  

    zombies.‘’’ 

    natural_death = death * y[0] 

    destroyed_zombies = destroy * \ 

y[0] * y[1] 

    created_zombies = resurrect * y[2] 

    return natural_death + \

 destroyed_zombies - created_zombies 

 

example4 = [human, zombie, dead] 

 

However, this will not execute in SciPy. A compromise 

may be using functions within a function (as shown 

below). However, this results in type error in SciPy; hence, 

not suitable. 
 

def example3(y, t): 

    def human(y, t): 

        infected = transmission * \ 

            y[0] * y[1] 

        dead = death * y[0] 

        return birth - infected - dead 

    def zombie(y, t): 

        newly_infected = transmission * \ 

  y[0] * y[1] 

        resurrected = resurrect * y[2] 

        destroyed = destroy * y[0] * y[1] 

        return newly_infected + \ 

               resurrected - destroyed 
    def dead(y, t): 

        natural_death = death * y[0] 

        destroyed_zombies = destroy * \ 

                            y[0] * y[1] 

        created_zombies = resurrect * y[2] 

        return natural_death + \ 

         destroyed_zombies - \ 

               created_zombies 

    return [human, zombie, dead] 

 

There are a number of Python implementations of ODE 

solvers available on the web. Senning [5] from Gordon 

College, USA, released an implementation based on the 

ODE solvers in Octave but required SciPy type 

implementation of ODE systems. Another released module 

(http://fisica.uc.pt/data/20032004/apontamentos/apnt_013_

32.txt) presents 4
th

-order Runge-Kutta method for both 

single ODE equation and a system of ODEs. The 4
th

-order 

Runge-Kutta solver for a system of ODEs allows for 

individual ODE equations to be implemented as function, 

followed by consolidating the functions into a Python list. 

This is identical to the improved solution described above. 

However, other solvers implemented in http:// 

fisica.uc.pt/data/20032004/apontamentos/apnt_013_32.txt, 

such as Euler method, only cater to single ODE equation 

and do not have the equivalent means for solving a system 

of ODEs.  

 

This manuscript build on these ODE solvers to cater for a 

system of ODEs implemented as individual functions (the 

improved solution). Three enhancements will be added. 

Firstly, the solvers will be implemented as generators. 

ODE solvers are essentially iterative function and a naïve 

implementation is using an evaluation loop for equations, 

storing results from each iteration, followed by returning 

the stored results to the calling function. This will not be 

able to cater to virtually infinite simulations, such as the 

simulation of geomagnetic field reversal [6]. A generator 

will enable a stream of intermediate results for analysis. 

Secondly, the solvers will allow for non-ODE-bounded 

variables or solution vector. Commonly, there will be an 

ODE for each variable; thus, the number of variables or 

solutions and ODEs are the same. This will require all 

equation parameters needed in the ODEs to be 

implemented as a data structure or as separate global 

variables. By allowing for non-ODE-bounded variables 

will provide a means to place all equation parameters and 

ODE solutions together, which is likely to improve code 

maintainability. Lastly, a means to set upper and lower 

boundary of ODE solutions will be added. This study re-

works 11 fixed time-step ODE solvers to allow for a 

system of ODEs to be implemented as a set of Python 

functions. 
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2. Experimental Details 

Eleven fixed time-step ODE solvers were implemented in 

this study; namely,  

1. Euler method,  

2. Heun’s method,  

3. 3
rd

 order Runge-Kutta method (RK3),  

4. 4
th

 order Runge-Kutta method (RK4),  

5. 4
th

 order Runge-Kutta method with 3/8 rule (RK4 

(3/8)),  

6. 4
th

 Runge-Kutta-Fehlberg method (RKF4), 

7. 5
th

 order Runge-Kutta-Fehlberg method (RKF5), 

8. 4
th

 order Cash-Karp [7] method (CK4), 

9. 5
th

 order Cash-Karp [7] method (CK5),  

10. 4
th

 order Dormand-Prince [8] method (DP4), and 

11. 5
th

 order Dormand-Prince [8] method (DP5). 

 

Implementation. All ODE solvers are first implemented, 

based on publically available Butcher’s tableaus, for 

solving single ODE equation. Each solver is then 

improved to cater for a system of ODEs by implementing 

a loop around the initial solver. For example, the single 

ODE version of RK4 can be implemented as 

 

f1 = func(x, y) 

f2 = func(x+0.5*step, y+0.5*step*f1) 

f3 = func(x+0.5*step, y+0.5*step*f2) 

f4 = func(x+step, y+step*f3) 

x = x + step 

y = y + step*(f1+2.0*f2+2.0*f3+f4)/6.0 

 

which can be easily improved for solving a system of 

ODEs as shown, 

 

for i in range(n):  

    f1[i] = func[i](x, y) 

for j in range(n):  

    y1[j] = y[j] + (0.5*step*f1[j]) 

for i in range(n):  

    f2[i] = func[i]((x+(0.5*step)), y1) 

for j in range(n):  

    y1[j] = y[j] + (0.5*step*f2[j]) 

for i in range(n):  

    f3[i] = func[i]((x+(0.5*step)), y1) 

for j in range(n):  

    y1[j] = y[j] + (step*f3[j]) 

for i in range(n):  

    f4[i] = func[i]((x+step), y1) 

x = x + step 

for i in range(n):  

    y1[i] = y[i] + (step * \ 

            (f1[i] + (2.0*f2[i]) + \ 

     (2.0*f3[i]) + f4[i]) / 6.0) 

 

Python programming language allows for easy conversion 

of a function into a generator using yield keyword, 

which satisfied the first enhancement. The second 

enhancement for non-ODE-bounded variables will result 

in an error, as there will not be equivalent ODE for the 

variables. This can be resolved by wrapping each 

operation with exception handling. The third enhancement 

of upper and lower boundaries is implemented by a 

checking function, which checks and value-bound each 

variable after each time-step.  

 

Testing. Each ODE solver undergoes three rounds of 

testing. Firstly, the system-capable ODE solver is 

compared against the single ODE solver counterpart. A 

standard one-process radioactive decay [9], which consists 

of only one equation, is used. It is expected that the 

system-capable ODE solver yield the same result as the 

single ODE solver counterpart. Secondly, results from 

system-capable ODE solvers are compared to the 

analytical solution for one-process radioactive decay. 

Lastly, using the 3-equation ODE to model zombie 

invasion [4] , the results from system-capable ODE solvers 

are compared to that of SciPy’s default ODE solver. 

3. Results and Discussion 

SciPy [2] can be considered as a de-facto scientific and 

numerical library in Python programming. However, 

SciPy does not allow a system of ODEs to be implemented 

as a set of functions, which improves documentation and 

maintainability. In this study, 11 ODE solvers are 

developed to enable a system of ODEs to be implemented 

as a set of functions. The implemented solvers are 

incorporated into COPADS repository (https://github.com/ 

copads/copads). 

 

Functions-enabled ODE solvers give comparable 

results to SciPy’s default ODE solver. By comparing the 

solutions from system-capable ODE solver is compared 

against the single ODE solver counterpart, the results 

suggest that solutions from system-capable ODE solver is 

identical against the single ODE solver counterpart for 

each of the 11 ODE solvers (correlation = 0, sum of % 

error across 500 time-steps = 0%). 

 

Comparing between the solutions from system-capable 

ODE solver and analytical equation for one-process 

radioactive decay, the results show that Euler method has 

the largest error (Table 1). This is expected since Euler 

method is the oldest and simplest method for numerical 

integration, which is used to derive higher order method 

with higher accuracy [10]. This suggests that Euler method 

is the least accurate of all numerical integration methods, 

which is supported by this study. However, despite its 

inaccuracy, solutions from Euler method to the 3-equation 

ODE to model zombie invasion [4] show consistency 

(Table 1, average correlation = 0.9469) with the solutions 
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from SciPy [2]. The results show that the other 10 ODE 

solvers show comparable solutions (average correlation > 

0.998) to that of SciPy [2]. The average correlation from 

3-equation ODE to model zombie invasion [4] is perfectly 

correlated (correlation = 1.0) to the sum of errors between 

ODE and analytical solutions. Given that SciPy [2] is the 

de-facto scientific and numerical library in Python 

programming, which can be used as the gold standard, 

these results suggest that the errors are likely due to 

floating point errors rather than implementation errors. 

Table 1: Testing of System-Enabled ODE Solvers. Sum of %Errors 

between ODE and analytical solution is calculated as the summation of 

%Errors across 500 time-steps. 

Solver 

Sum of % 

Error (ODE vs 

Analytical) 

Average Correlation (n=3) 

with Output from SciPy’s 

Default ODE Solver 

Euler 2455.1818 0.94693390 

Heun 16.95633237 0.99841780 

RK3 8.48470E-02 0.99991199 

RK4 3.39614E-04 0.99996421 

RK4 

(3/8) 3.39614E-04 0.99996426 

RKF4 5.35594E-05 0.99996847 

RKF5 7.37329E-07 0.99996802 

CK4 1.19722E-07 0.99996823 

CK5 1235.207898 0.99996816 

DP4 3.30892E-05 0.99996853 

DP5 2.30707E-07 0.99996825 

 

Non-ODE-bounded Solution / Variable Vector. It is 

common to keep equation parameters and variable (ODE 

solutions) separate. However, this is usually a prescriptive 

rule rather than suggested implementation, as most ODE 

solvers will require an ODE for each of the variable.  

 

Consider the case whereby the same system of ODEs is 

being studied using different sets of equation parameters, 

which is common to examine the effects of parameters on 

the solutions, also known as sensitivity analysis [11, 12]. 

When large numbers of combinations of equation 

parameters are being examined, documentation becomes 

increasingly difficult, as the equation parameters are not 

coupled with the ODE solutions. Hence, it may be useful 

in this case to have the equation parameters as part of the 

entire vector of ODE solutions. A means to achieve this 

will be to keep equation parameters as part of the solution 

vector, which requires the ODE solver to cater for 

“solutions” (which are actually equation parameters) that 

do not have ODE attached. An enhancement is made to the 

11 ODE solvers in this study to cater for variables without 

ODE attached for use as equation parameters. 

 

For example, to the 3-equation ODE to model zombie 

invasion [4],  

 

import ode 

 

# birth rate 

birth = 0     

# natural death percent (per day)     

death = 0.0001  

# transmission percent  (per day) 

transmission = 0.0095   

# resurect percent (per day)  

resurect = 0.0001     

# destroy percent  (per day)    

destroy = 0.0001         

 

def human(t, y): 

    infected = transmission * y[0] * y[1] 

    dead = death * y[0] 

    return birth - infected - dead 

def zombie(t, y): 

    newly_infected = transmission * \ 

        y[0] * y[1] 

    resurrected = resurrect * y[2] 

    destroyed = destroy * y[0] * y[1] 

    return newly_infected + resurrected - \ 

           destroyed 

def dead(t, y): 

    natural_death = death * y[0] 

    destroyed_zombies = destroy * \ 

        y[0] * y[1] 

    created_zombies = resurrect * y[2] 

    return natural_death + \ 

           destroyed_zombies - \ 

           created_zombies 

 

# system of ODEs 

f = [human, zombie, dead]    

 

# initial human, zombie, death population  

# respectively 

y = [500.0, 0, 0]   

print('’’Solving using 5th order Dormand-

Prince method ......'’’) 

for i in [x for x in  

          ode.DP5(f, 0.0, y, 0.1, 50.0)]: 

    print(','.join([str(z) for z in i])) 

 

can be implemented as 

 

import ode 

 

def human(t, y): 

    infected = y[5] * y[0] * y[1] 

    dead = y[4] * y[0] 

    return y[3] - infected - dead 

def zombie(t, y): 

    newly_infected = y[5] * y[0] * y[1] 

    resurrected = y[6] * y[2] 

    destroyed = y[7] * y[0] * y[1] 

    return newly_infected + resurrected - \ 

           destroyed 

def dead(t, y): 
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    natural_death = y[4] * y[0] 

    destroyed_zombies = y[7] * y[0] * y[1] 

    created_zombies = y[6] * y[2] 

    return natural_death + \ 

           destroyed_zombies - \ 

           created_zombies 

 

f = range(8) 

f[0] = human 

f[1] = zombie 

f[2] = dead 

 

y = range(8) 

y[0] = 500.0 # initial human population 

y[1] = 0.0   # initial zombie population 

y[2] = 0.0   # initial death population 

y[3] = 0     # birth rate              

y[4] = 0.0001 # natural death percent / day 

y[5] = 0.0095 # transmission percent  / day 

y[6] = 0.0001  # resurrect percent / day 

y[7] = 0.0001  # destroy percent / day 

 

print('’’Solving using 5th order Dormand-

Prince method ......'’’) 

for i in [x for x in  

          ode.DP5(f, 0.0, y, 0.1, 50.0)]: 

    print(','.join([str(z) for z in i])) 

 

The solution vector will be an array of 500 time-steps of 9 

data elements, inclusive of time as the first element. 

However, only the 2
nd

, 3
rd

, and 4
th

 data elements are the 

actual ODE solutions, which are number of humans, 

zombies, and dead respectively. The last 4 data elements 

are the equation parameters. These equation parameters 

will not change throughout the simulation, as there are no 

ODEs attached to change these parameters. Although this 

will result in a larger result file, if saved, due to repeated 

equation parameters; there can be no error as to the set of 

equation parameters is used to generate the corresponding 

ODE solutions. Hence, the saved result file is self-

documenting, which improves results documentation. 

 

Upper and/or Lower Boundaries. Establishing 

boundaries for ODE solutions is regularly seen [13, 14]; 

hence, it will be useful to have this feature in the 

implemented solvers. Upper and lower boundaries are 

implemented separately, as different parameters to the 

ODE solver. This allows for ODEs to have either upper or 

lower boundaries or both. Moreover, boundaries are 

implemented as non-mandatory options in the solvers. 

This allow for maximum flexibility. 

 

The boundaries are passed to the solver as a Python 

dictionary where the key is the array position of the ODE, 

which also corresponds to the position in the solution 

vector; and the value is a 2-element list of boundary value 

and reset. For example, lower boundary dictionary, {2: 

[5.0, 5.1]}, will reset the solution of the third ODE 

(Python language uses zero-based list index numbering) to 

5.1 when the solution is lower than 5.0. 

 

A lower boundary of at least 3000 radioactive nuclei is 

compared against that without boundary. The result show 

that the number of radioactive nuclei does not drop below 

3000 when lower boundary is used (Figure 1A), 

suggesting that the implementation is functional. 
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Fig.1 Effects of Boundaries on ODE Systems. 

 

An additional example shows the 3-equation model of 

zombie invasion [4] with no boundary, lower boundary to 

have at least 10 humans, and both upper (maximum of 

1000 zombies) and lower (at least 10 humans) boundaries: 

 

import ode 

 

birth = 0      # birth rate 

# natural death percent / day 

death = 0.0001  

# transmission percent / day 

transmission = 0.0095  

# resurrect percent / day   

resurect = 0.0001        

destroy = 0.0001 # destroy percent / day 

 

 

 

def human(t, y): 
    infected = transmission*y[0]*y[1] 

    dead = death*y[0] 

    return birth - infected - dead 

def zombie(t, y): 

    newly_infected = transmission*y[0]*y[1] 

    resurrected = resurect*y[2] 

    destroyed = destroy*y[0]*y[1] 

    return newly_infected + resurrected - \ 

           destroyed 

def dead(t, y): 

    natural_death = death*y[0] 

    destroyed_zombies = destroy*y[0]*y[1] 

    created_zombies = resurect*y[2] 

    return natural_death + \ 

           destroyed_zombies - \ 

           created_zombies 

 

# system of ODEs 

f = [human, zombie, dead]   

 

# initial human, zombie, death population  

# respectively 

y = [500.0, 0, 0]   

lower_bound = {0: [10.0, 10.0]} 

upper_bound = {1: [1000.0, 1000.0]} 

 

print('’’Solving using 5th order Dormand-

Prince method ......'’’) 

nobound = [x for x in  

           ode.DP5(f, 0.0, y, 0.1, 50.0)] 

lowerbound = [x for x in  

              ode.DP5(f, 0.0, y, 0.1, 50.0,  

                      lower_bound)] 

doublebound = [x for x in  

              ode.DP5(f, 0.0, y, 0.1, 50.0,  

              lower_bound, upper_bound)] 

for i in range(len(nobound)): 

    consolidated = nobound[i] + \ 

       lowerbound[i][1:] + \ 

                   doublebound[i][1:] 

    print ','.join([str(x)  

                    for x in consolidated]) 

 

Initial human population limits the final zombie 

population in no boundary scenario (Figure 1B), as birth 

rate is set to zero. This is expected as human is the only 

source for creating more zombies. Once the human 

population collapses, there is no additional human to be 

infected; hence, the zombie population stagnates. When 

the number of human is set to at least 10, the number of 

zombies increases to nearly 3500 before showing signs of 

plateauing (Figure 1C). The increase in zombie population 

can be attributed to a constant lower limit of human 

population to be infected, suggesting that the dynamics of 

the system can be significantly different with non-zero 

lower boundary. Similarly, both upper and lower 

boundaries can be established (Figure 1D) to bring an 

artificial limit to the number of zombies. Nevertheless, by 

comparing the results between with and without 
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boundar(ies) suggests that boundary implementation is 

functional. 

4. Conclusion 

Eleven ODE solvers are implemented using Python 

programming language in this study, which allows for a 

system of ODEs to be implemented as a set of Python 

functions. This allow for better code documentation and 

maintenance. Three enhancements are implemented to 

improve the functionality and flexibility of the solvers. 

The implemented solvers are incorporated into COPADS 

repository (https://github.com/copads/copads). 
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