

COPADS IV: Fixed Time-Step ODE Solvers for a System of

Equations Implemented as a Set of Python Functions

Maurice HT Ling

Colossus Technologies LLP, Republic of Singapore

School of BioSciences, The University of Melbourne

Parkville, Victoria 3010, Australia

mauriceling@colossus-tech.com

Abstract
Ordinary differential equation (ODE) systems are commonly

used many different fields. The de-facto method to implement an

ODE system in Python programming using SciPy requires the

entire system to be implemented as a single function, which only

allow for inline documentation. Although each equation can be

broken up into sub-equations, there is no compart-mentalization

of sub-equations to its ODE. A better method will be to

implement each ODE as a function. This encapsulates the sub-

equations to its ODE, and allow for function and inline

documentation, resulting in better maintainability. This study

presents the implementation 11 ODE solvers that enable each

ODE in a system to be implemented as a function. Three

enhancements will be added. Firstly, the solvers will be

implemented as generators to allow for virtually infinite

simulation and returning a stream of intermediate results for

analysis. Secondly, the solvers will allow for non-ODE-bounded

variables or solution vector to improve code and results

documentation. Lastly, a means to set upper and lower boundary

of ODE solutions will be added. Validation testing shows that the

enhanced ODE solvers give comparable results to SciPy’s default

ODE solver. The implemented solvers are incorporated into

COPADS repository (https://github.com/copads/copads).

Keywords: ODE solvers; system of ODEs; Python;

Documentation; one-ODE-one-function

1. Introduction

Ordinary differential equation (ODE) is an important

mathematical tool in many fields [1], especially in

modeling, as it describes the rate of change of one variable

with respect to another variable. The integral of an ODE

results in the analytical form of equation. However,

symbolic integration of an ODE may be difficult and

numerical integration is usually performed. An ODE

solver is an algorithm to perform numerical integration on

an ODE. When a set of ODEs describing different is

related to a common underlying variable, such as time, it

becomes a system of ODEs and relationship between

different variables can be examined.

Almost all programming languages will have tools or

libraries to implement ODE as a single equation or as a

system and solving the ODE(s). In Python programming,

the standard way of writing ODE systems in SciPy [2] and

Odespy [3] is to implement one or more ODEs within a

single function. Using a simple 3-equation ODE to model

zombie invasion [4] as an example, the following are

means of writing the ODEs in SciPy:

def example1(y, t):

 human = birth - \

transmission*y[0]*y[1] - death*y[0]

 zombie = transmission*y[0]*y[1] + \

 resurect*y[2] - destroy*y[0]*y[1]

 dead = death*y[0] + \

destroy*y[0]*y[1] - resurect*y[2]

 return [human, zombie, dead]

def example2(y, t):

 f = [birth - transmission*y[0]*y[1] - \

 death*y[0],

 transmission*y[0]*y[1] + \

 resurect*y[2] - destroy*y[0]*y[1],

 death*y[0] + destroy*y[0]*y[1] - \

 resurect*y[2]]

 return f

However, standard means of writing ODEs in SciPy [2] as

shown above present two issues. Firstly, it is common to

have ODEs comprising of many constituent functions.

This will result in equations spending multiple lines and

possibly across multiple pages, which is difficult to read.

Secondly, it does not allow for effective documentation.

As a result, a large system of ODEs written in SciPy’s

method will be difficult to read and usually suffer from the

lack of ample documentation.

An improved solution is to allow users to implement each

ODE as a separate function, allowing for function-level

documentation that is compatible to documentation

generators, such as Epydoc (http://epydoc.sf.net) or Sphinx

(http://sphinx-doc.org). This is followed by consolidating

individual ODEs into a system of ODEs using a data

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

5

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

http://epydoc.sf.net/
http://sphinx-doc.org/

structure, such as a list, before solving. In this case, the 3

ODEs in Munz et al. [4] can be written as:

def human(t, y):

 ‘’’Modeling the number of remaining

 humans. Infected represents the number

 of humans infected by existing zombies

 (zombified). Dead represents natural

 (non-zombified) deaths.‘’’

 infected = transmission * y[0] * y[1]

 dead = death * y[0]

 return birth - infected - dead

def zombie(t, y):

 ‘’’Modeling the number of zombies.

 Newly infected represents the number of

 new additions as humans are infected by

 existing zombies (zombified). Resur-

 rected represents revival of the dead.

 Destroyed represents the number of

 zombies destroyed by humans.‘’’

 newly_infected = transmission * \

 y[0] * y[1]

 resurrected = resurrect * y[2]

 destroyed = destroy * y[0] * y[1]

 return newly_infected + \

resurrected - destroyed

def dead(t, y):

 ‘’’Modeling the total number of dead.

 Natural death represents natural (non-

 zombified) deaths of humans. Destroyed

 zombies represent the number of zombies

 destroyed by humans. Created zombies

 represents revival of all dead, be it

 from natural death or destroyed

 zombies.‘’’

 natural_death = death * y[0]

 destroyed_zombies = destroy * \

y[0] * y[1]

 created_zombies = resurrect * y[2]

 return natural_death + \

 destroyed_zombies - created_zombies

example4 = [human, zombie, dead]

However, this will not execute in SciPy. A compromise

may be using functions within a function (as shown

below). However, this results in type error in SciPy; hence,

not suitable.

def example3(y, t):

 def human(y, t):

 infected = transmission * \

 y[0] * y[1]

 dead = death * y[0]

 return birth - infected - dead

 def zombie(y, t):

 newly_infected = transmission * \

 y[0] * y[1]

 resurrected = resurrect * y[2]

 destroyed = destroy * y[0] * y[1]

 return newly_infected + \

 resurrected - destroyed
 def dead(y, t):

 natural_death = death * y[0]

 destroyed_zombies = destroy * \

 y[0] * y[1]

 created_zombies = resurrect * y[2]

 return natural_death + \

 destroyed_zombies - \

 created_zombies

 return [human, zombie, dead]

There are a number of Python implementations of ODE

solvers available on the web. Senning [5] from Gordon

College, USA, released an implementation based on the

ODE solvers in Octave but required SciPy type

implementation of ODE systems. Another released module

(http://fisica.uc.pt/data/20032004/apontamentos/apnt_013_

32.txt) presents 4
th

-order Runge-Kutta method for both

single ODE equation and a system of ODEs. The 4
th

-order

Runge-Kutta solver for a system of ODEs allows for

individual ODE equations to be implemented as function,

followed by consolidating the functions into a Python list.

This is identical to the improved solution described above.

However, other solvers implemented in http://

fisica.uc.pt/data/20032004/apontamentos/apnt_013_32.txt,

such as Euler method, only cater to single ODE equation

and do not have the equivalent means for solving a system

of ODEs.

This manuscript build on these ODE solvers to cater for a

system of ODEs implemented as individual functions (the

improved solution). Three enhancements will be added.

Firstly, the solvers will be implemented as generators.

ODE solvers are essentially iterative function and a naïve

implementation is using an evaluation loop for equations,

storing results from each iteration, followed by returning

the stored results to the calling function. This will not be

able to cater to virtually infinite simulations, such as the

simulation of geomagnetic field reversal [6]. A generator

will enable a stream of intermediate results for analysis.

Secondly, the solvers will allow for non-ODE-bounded

variables or solution vector. Commonly, there will be an

ODE for each variable; thus, the number of variables or

solutions and ODEs are the same. This will require all

equation parameters needed in the ODEs to be

implemented as a data structure or as separate global

variables. By allowing for non-ODE-bounded variables

will provide a means to place all equation parameters and

ODE solutions together, which is likely to improve code

maintainability. Lastly, a means to set upper and lower

boundary of ODE solutions will be added. This study re-

works 11 fixed time-step ODE solvers to allow for a

system of ODEs to be implemented as a set of Python

functions.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

6

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

2. Experimental Details

Eleven fixed time-step ODE solvers were implemented in

this study; namely,

1. Euler method,

2. Heun’s method,

3. 3
rd

 order Runge-Kutta method (RK3),

4. 4
th

 order Runge-Kutta method (RK4),

5. 4
th

 order Runge-Kutta method with 3/8 rule (RK4

(3/8)),

6. 4
th

 Runge-Kutta-Fehlberg method (RKF4),

7. 5
th

 order Runge-Kutta-Fehlberg method (RKF5),

8. 4
th

 order Cash-Karp [7] method (CK4),

9. 5
th

 order Cash-Karp [7] method (CK5),

10. 4
th

 order Dormand-Prince [8] method (DP4), and

11. 5
th

 order Dormand-Prince [8] method (DP5).

Implementation. All ODE solvers are first implemented,

based on publically available Butcher’s tableaus, for

solving single ODE equation. Each solver is then

improved to cater for a system of ODEs by implementing

a loop around the initial solver. For example, the single

ODE version of RK4 can be implemented as

f1 = func(x, y)

f2 = func(x+0.5*step, y+0.5*step*f1)

f3 = func(x+0.5*step, y+0.5*step*f2)

f4 = func(x+step, y+step*f3)

x = x + step

y = y + step*(f1+2.0*f2+2.0*f3+f4)/6.0

which can be easily improved for solving a system of

ODEs as shown,

for i in range(n):

 f1[i] = func[i](x, y)

for j in range(n):

 y1[j] = y[j] + (0.5*step*f1[j])

for i in range(n):

 f2[i] = func[i]((x+(0.5*step)), y1)

for j in range(n):

 y1[j] = y[j] + (0.5*step*f2[j])

for i in range(n):

 f3[i] = func[i]((x+(0.5*step)), y1)

for j in range(n):

 y1[j] = y[j] + (step*f3[j])

for i in range(n):

 f4[i] = func[i]((x+step), y1)

x = x + step

for i in range(n):

 y1[i] = y[i] + (step * \

 (f1[i] + (2.0*f2[i]) + \

 (2.0*f3[i]) + f4[i]) / 6.0)

Python programming language allows for easy conversion

of a function into a generator using yield keyword,

which satisfied the first enhancement. The second

enhancement for non-ODE-bounded variables will result

in an error, as there will not be equivalent ODE for the

variables. This can be resolved by wrapping each

operation with exception handling. The third enhancement

of upper and lower boundaries is implemented by a

checking function, which checks and value-bound each

variable after each time-step.

Testing. Each ODE solver undergoes three rounds of

testing. Firstly, the system-capable ODE solver is

compared against the single ODE solver counterpart. A

standard one-process radioactive decay [9], which consists

of only one equation, is used. It is expected that the

system-capable ODE solver yield the same result as the

single ODE solver counterpart. Secondly, results from

system-capable ODE solvers are compared to the

analytical solution for one-process radioactive decay.

Lastly, using the 3-equation ODE to model zombie

invasion [4] , the results from system-capable ODE solvers

are compared to that of SciPy’s default ODE solver.

3. Results and Discussion

SciPy [2] can be considered as a de-facto scientific and

numerical library in Python programming. However,

SciPy does not allow a system of ODEs to be implemented

as a set of functions, which improves documentation and

maintainability. In this study, 11 ODE solvers are

developed to enable a system of ODEs to be implemented

as a set of functions. The implemented solvers are

incorporated into COPADS repository (https://github.com/

copads/copads).

Functions-enabled ODE solvers give comparable

results to SciPy’s default ODE solver. By comparing the

solutions from system-capable ODE solver is compared

against the single ODE solver counterpart, the results

suggest that solutions from system-capable ODE solver is

identical against the single ODE solver counterpart for

each of the 11 ODE solvers (correlation = 0, sum of %

error across 500 time-steps = 0%).

Comparing between the solutions from system-capable

ODE solver and analytical equation for one-process

radioactive decay, the results show that Euler method has

the largest error (Table 1). This is expected since Euler

method is the oldest and simplest method for numerical

integration, which is used to derive higher order method

with higher accuracy [10]. This suggests that Euler method

is the least accurate of all numerical integration methods,

which is supported by this study. However, despite its

inaccuracy, solutions from Euler method to the 3-equation

ODE to model zombie invasion [4] show consistency

(Table 1, average correlation = 0.9469) with the solutions

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

7

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

from SciPy [2]. The results show that the other 10 ODE

solvers show comparable solutions (average correlation >

0.998) to that of SciPy [2]. The average correlation from

3-equation ODE to model zombie invasion [4] is perfectly

correlated (correlation = 1.0) to the sum of errors between

ODE and analytical solutions. Given that SciPy [2] is the

de-facto scientific and numerical library in Python

programming, which can be used as the gold standard,

these results suggest that the errors are likely due to

floating point errors rather than implementation errors.

Table 1: Testing of System-Enabled ODE Solvers. Sum of %Errors

between ODE and analytical solution is calculated as the summation of

%Errors across 500 time-steps.

Solver

Sum of %

Error (ODE vs

Analytical)

Average Correlation (n=3)

with Output from SciPy’s

Default ODE Solver

Euler 2455.1818 0.94693390

Heun 16.95633237 0.99841780

RK3 8.48470E-02 0.99991199

RK4 3.39614E-04 0.99996421

RK4

(3/8) 3.39614E-04 0.99996426

RKF4 5.35594E-05 0.99996847

RKF5 7.37329E-07 0.99996802

CK4 1.19722E-07 0.99996823

CK5 1235.207898 0.99996816

DP4 3.30892E-05 0.99996853

DP5 2.30707E-07 0.99996825

Non-ODE-bounded Solution / Variable Vector. It is

common to keep equation parameters and variable (ODE

solutions) separate. However, this is usually a prescriptive

rule rather than suggested implementation, as most ODE

solvers will require an ODE for each of the variable.

Consider the case whereby the same system of ODEs is

being studied using different sets of equation parameters,

which is common to examine the effects of parameters on

the solutions, also known as sensitivity analysis [11, 12].

When large numbers of combinations of equation

parameters are being examined, documentation becomes

increasingly difficult, as the equation parameters are not

coupled with the ODE solutions. Hence, it may be useful

in this case to have the equation parameters as part of the

entire vector of ODE solutions. A means to achieve this

will be to keep equation parameters as part of the solution

vector, which requires the ODE solver to cater for

“solutions” (which are actually equation parameters) that

do not have ODE attached. An enhancement is made to the

11 ODE solvers in this study to cater for variables without

ODE attached for use as equation parameters.

For example, to the 3-equation ODE to model zombie

invasion [4],

import ode

birth rate

birth = 0

natural death percent (per day)

death = 0.0001

transmission percent (per day)

transmission = 0.0095

resurect percent (per day)

resurect = 0.0001

destroy percent (per day)

destroy = 0.0001

def human(t, y):

 infected = transmission * y[0] * y[1]

 dead = death * y[0]

 return birth - infected - dead

def zombie(t, y):

 newly_infected = transmission * \

 y[0] * y[1]

 resurrected = resurrect * y[2]

 destroyed = destroy * y[0] * y[1]

 return newly_infected + resurrected - \

 destroyed

def dead(t, y):

 natural_death = death * y[0]

 destroyed_zombies = destroy * \

 y[0] * y[1]

 created_zombies = resurrect * y[2]

 return natural_death + \

 destroyed_zombies - \

 created_zombies

system of ODEs

f = [human, zombie, dead]

initial human, zombie, death population

respectively

y = [500.0, 0, 0]

print('’’Solving using 5th order Dormand-

Prince method'’’)

for i in [x for x in

 ode.DP5(f, 0.0, y, 0.1, 50.0)]:

 print(','.join([str(z) for z in i]))

can be implemented as

import ode

def human(t, y):

 infected = y[5] * y[0] * y[1]

 dead = y[4] * y[0]

 return y[3] - infected - dead

def zombie(t, y):

 newly_infected = y[5] * y[0] * y[1]

 resurrected = y[6] * y[2]

 destroyed = y[7] * y[0] * y[1]

 return newly_infected + resurrected - \

 destroyed

def dead(t, y):

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

8

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

 natural_death = y[4] * y[0]

 destroyed_zombies = y[7] * y[0] * y[1]

 created_zombies = y[6] * y[2]

 return natural_death + \

 destroyed_zombies - \

 created_zombies

f = range(8)

f[0] = human

f[1] = zombie

f[2] = dead

y = range(8)

y[0] = 500.0 # initial human population

y[1] = 0.0 # initial zombie population

y[2] = 0.0 # initial death population

y[3] = 0 # birth rate

y[4] = 0.0001 # natural death percent / day

y[5] = 0.0095 # transmission percent / day

y[6] = 0.0001 # resurrect percent / day

y[7] = 0.0001 # destroy percent / day

print('’’Solving using 5th order Dormand-

Prince method'’’)

for i in [x for x in

 ode.DP5(f, 0.0, y, 0.1, 50.0)]:

 print(','.join([str(z) for z in i]))

The solution vector will be an array of 500 time-steps of 9

data elements, inclusive of time as the first element.

However, only the 2
nd

, 3
rd

, and 4
th

 data elements are the

actual ODE solutions, which are number of humans,

zombies, and dead respectively. The last 4 data elements

are the equation parameters. These equation parameters

will not change throughout the simulation, as there are no

ODEs attached to change these parameters. Although this

will result in a larger result file, if saved, due to repeated

equation parameters; there can be no error as to the set of

equation parameters is used to generate the corresponding

ODE solutions. Hence, the saved result file is self-

documenting, which improves results documentation.

Upper and/or Lower Boundaries. Establishing

boundaries for ODE solutions is regularly seen [13, 14];

hence, it will be useful to have this feature in the

implemented solvers. Upper and lower boundaries are

implemented separately, as different parameters to the

ODE solver. This allows for ODEs to have either upper or

lower boundaries or both. Moreover, boundaries are

implemented as non-mandatory options in the solvers.

This allow for maximum flexibility.

The boundaries are passed to the solver as a Python

dictionary where the key is the array position of the ODE,

which also corresponds to the position in the solution

vector; and the value is a 2-element list of boundary value

and reset. For example, lower boundary dictionary, {2:

[5.0, 5.1]}, will reset the solution of the third ODE

(Python language uses zero-based list index numbering) to

5.1 when the solution is lower than 5.0.

A lower boundary of at least 3000 radioactive nuclei is

compared against that without boundary. The result show

that the number of radioactive nuclei does not drop below

3000 when lower boundary is used (Figure 1A),

suggesting that the implementation is functional.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

3
.6

7
.2

1
0

.8

1
4

.4 1
8

2
1

.6

2
5

.2

2
8

.8

3
2

.4 3
6

3
9

.6

4
3

.2

4
6

.8

N
u

m
b

e
r

o
f

N
u

cl
e

i

Time

(A) Effect of Boundary Value on
Number of Nuclei

No boundary

At least 3000 nuclei

0

100

200

300

400

500

600

0

3
.4

6
.8

1
0

.2

1
3

.6 1
7

2
0

.4

2
3

.8

2
7

.2

3
0

.6 3
4

3
7

.4

4
0

.8

4
4

.2

4
7

.6

N
u

m
b

e
r

Time (Days)

(B) Human vs Zombie - No Boundary
Condition

Human

Zombie

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

9

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig.1 Effects of Boundaries on ODE Systems.

An additional example shows the 3-equation model of

zombie invasion [4] with no boundary, lower boundary to

have at least 10 humans, and both upper (maximum of

1000 zombies) and lower (at least 10 humans) boundaries:

import ode

birth = 0 # birth rate

natural death percent / day

death = 0.0001

transmission percent / day

transmission = 0.0095

resurrect percent / day

resurect = 0.0001

destroy = 0.0001 # destroy percent / day

def human(t, y):
 infected = transmission*y[0]*y[1]

 dead = death*y[0]

 return birth - infected - dead

def zombie(t, y):

 newly_infected = transmission*y[0]*y[1]

 resurrected = resurect*y[2]

 destroyed = destroy*y[0]*y[1]

 return newly_infected + resurrected - \

 destroyed

def dead(t, y):

 natural_death = death*y[0]

 destroyed_zombies = destroy*y[0]*y[1]

 created_zombies = resurect*y[2]

 return natural_death + \

 destroyed_zombies - \

 created_zombies

system of ODEs

f = [human, zombie, dead]

initial human, zombie, death population

respectively

y = [500.0, 0, 0]

lower_bound = {0: [10.0, 10.0]}

upper_bound = {1: [1000.0, 1000.0]}

print('’’Solving using 5th order Dormand-

Prince method'’’)

nobound = [x for x in

 ode.DP5(f, 0.0, y, 0.1, 50.0)]

lowerbound = [x for x in

 ode.DP5(f, 0.0, y, 0.1, 50.0,

 lower_bound)]

doublebound = [x for x in

 ode.DP5(f, 0.0, y, 0.1, 50.0,

 lower_bound, upper_bound)]

for i in range(len(nobound)):

 consolidated = nobound[i] + \

 lowerbound[i][1:] + \

 doublebound[i][1:]

 print ','.join([str(x)

 for x in consolidated])

Initial human population limits the final zombie

population in no boundary scenario (Figure 1B), as birth

rate is set to zero. This is expected as human is the only

source for creating more zombies. Once the human

population collapses, there is no additional human to be

infected; hence, the zombie population stagnates. When

the number of human is set to at least 10, the number of

zombies increases to nearly 3500 before showing signs of

plateauing (Figure 1C). The increase in zombie population

can be attributed to a constant lower limit of human

population to be infected, suggesting that the dynamics of

the system can be significantly different with non-zero

lower boundary. Similarly, both upper and lower

boundaries can be established (Figure 1D) to bring an

artificial limit to the number of zombies. Nevertheless, by

comparing the results between with and without

0

500

1000

1500

2000

2500

3000

3500

0
3

.6
7

.2
1

0
.8

1
4

.4 1
8

2
1

.6
2

5
.2

2
8

.8
3

2
.4 3
6

3
9

.6
4

3
.2

4
6

.8

N
u

m
b

e
r

Time (Days)

(C) Human vs Zombie - At Least 10
Humans

Human

Zombie

0

200

400

600

800

1000

1200

0

3
.4

6
.8

1
0

.2

1
3

.6 1
7

2
0

.4

2
3

.8

2
7

.2

3
0

.6 3
4

3
7

.4

4
0

.8

4
4

.2

4
7

.6

N
u

m
b

e
r

Time (Days)

(D) Human vs Zombie - At Least 10
Humans & At Most 1000 Zombies

Human

Zombie

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

10

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

boundar(ies) suggests that boundary implementation is

functional.

4. Conclusion

Eleven ODE solvers are implemented using Python

programming language in this study, which allows for a

system of ODEs to be implemented as a set of Python

functions. This allow for better code documentation and

maintenance. Three enhancements are implemented to

improve the functionality and flexibility of the solvers.

The implemented solvers are incorporated into COPADS

repository (https://github.com/copads/copads).

Acknowledgement
The author will like to thank HJ Wang (Nanyang

Technological University, Singapore) for her discussion

and comments on the initial drafts.

References
[1] C. C. Chicone, “Ordinary Differential Equations with

Applications”, Springer, 1999.

[2] T. E. Oliphant, “Python for Scientific Computing”,

Computing in Science & Engineering, 9, 2007, 10-20.

[3] H. P. Langtangen and L. Wang, “Odespy software package”,

2014. URL: https://github.com/hplgit/odespy.

[4] P. Munz, I. Hudea, J. Imad and R. J. Smith, “When Zombies

Attack!: Mathematical Modelling of Outbreak of Zombie

Infection”, Infectious Disease Modelling Research Progress,

4, 2009, 133-150.

[5] J. Senning, “www.math-cs.gordon.edu/courses/ma342/

python/diffeq.py”, 2008.

[6] G. A. Glatzmaiers and P. H. Roberts, “A Three-Dimensional

Self-Consistent Computer Simulation of a Geomagnetic Field

Reversal”, Nature, 377, 1995, 203-209.

[7] J. R. Cash and A. H. Karp, “A Variable Order Runge-Kutta

Method for Initial Value Problems with Rapidly Varying

Right-Hand Sides”, ACM Transactions on Mathematical

Software, 16, 1990, 201-222.

[8] J.R. Dormand and P. J Prince, “A Family of Embedded

Runge-Kutta Formulae”, Journal of Computational and

Applied Mathematics, 6, 1980, 19–26.

[9] S. B. Patel, “Nuclear Physics: An Introduction”, New Delhi:

New Age International, 2000.

[10] Z. Memon, S. Qureshi, A. A. Shaikh and M. S. Chandio, “A

Modified ODE Solver for Autonomous Initial Value

Problems”, Mathematical Theory and Modeling, 4, 2014, 80-

85.

[11] G. Bao and H. Zhang, “Sensitivity Analysis of an Inverse

Problem for the Wave Equation with Caustics”, Journal of

the American Mathematical Society, 27, 2014, 953-981.

[12] Z. Zi, “Sensitivity Approached Applied to System Biology

Models”, IET Systems Biology, 5, 2011, 336-346.

[13] F. Brauer, “Bounds for Solutions of Ordinary Differential

Equations”, Proceedings of the American Mathematical

Society, 14, 1963, 36-43.

[14] J. K. Scott and P. I. Barton, “Improved Relaxations for

Parametric Solutions of ODEs using Differential

Inequalities”, Journal of Global Optimization, 57, 2013, 143-

176.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

11

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

