

Multilingual extraction and editing of concept strings for the legal

domain

Andrea Varga1, and Andrew N. Edmonds2

 1 The Content Group,

Godalming, GU7 1JX, United Kingdom

varga.andy@gmail.com

2 The Content Group,

Godalming, GU7 1JX, United Kingdom

andy@docandys.com

Abstract

Identifying semantic expressions (so-called concept strings

(CSs)) in multilingual corpora is an important NLP task, as it

allows web search engines to define and perform semantic

queries over large collection of documents. Existing web search

engines in the legal domain are mainly limited to keyword search,

in which the query word is matched against the textual content of

the documents. This paper presents a novel framework named the

Concept Strings Framework that makes use of CSs for

representing the content of the documents, and for allowing

semantic search over them. These CSs can consist of individual

knowledge base (KB) concepts (e.g. WordNet concepts) or

combination of them. In addition, this paper presents an

interactive web-based toolkit, called the Template Editor that

enables the creation, editing and evaluation of CSs. Experiments

on two publicly available legislation websites show satisfactory

results.

Keywords: Semantic Search; Concept Strings; Knowledge

Base; WordNet

1. Introduction

To operate efficiently, financial institutions need to

regularly create and update documents, comply with the

laws concerning the management of the documents, and

keep track of the changes made in the legislation. For

instance, the regulations can specify requirements that the

documents must fulfill, such as the time period which a

document must be retained for (retention requirement), the

format in which the document must be kept (format

requirement), the time when the document must be

submitted to an agency (submission requirement) or

completely destroyed (destruction requirement). This task

is currently done by domain experts, who employ various

state-of-the-art keyword based search engines (e.g.

legislation.gov.uk for the UK, and http://www.ecfr.gov for

the USA) to find appropriate requirement laws, and then

review these laws manually. The output returned by such

tools however depends on the keywords used by the

experts, introducing the risk of missing out some

important information, due to the various expressions used

to describe relevant information.

In order to avoid this, this paper presents a novel

framework called the Concept Strings Framework that

makes use of multilingual knowledge bases (KBs) to

understand the content of the documents and to formulate

semantic queries over them. The created semantic queries

rely on CSs [1] that consists of KB concepts and arbitrary

combination of them. Additionally this framework exploits

the hierarchical structure of KBs to obtain synonyms of

these concepts.

For the representation of CSs a standard language was

proposed. This paper further presents a web-based toolkit

called the Template Editor, which using the proposed

language permits the creation, editing and evaluation of

CSs. The website can be used by multiple users

simultaneously, providing an efficient way for the visual

exploration of CSs.

The main contributions of this paper are as follows: a) a

framework for extracting CSs and performing semantic

search b) an interactive web-based toolkit for editing,

visualizing and evaluating multilingual CSs, and c) a new

language for encoding the concepts defined in CSs.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

18

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

2. Related Work

The semantic processing of legal documents has gained

much attention in recent years, due to the organization of

conferences (e.g. JURIX
1
, ICAIL

2
), legal tracks at the

TREC
3
 conference, and biannual LREC SPLet workshop

4

focusing on this topic. The main NLP tasks explored are

information extraction, co-reference resolution, keyword

extraction, document classification, dependency parsing,

summarization, and search.

The majority of web search engines developed is keyword

based. Most countries provide a web search engine for

their legislation, for instance legislation.gov.uk in the UK,

boe.es in Spain, and legifrance.gouv.fr in France. In

addition, there has been some work on building ontologies

for the legal domain in the SALEM (Semantic Annotation

for LEgal Management) [2], [3], and the LOIS (Lexical

Ontologies for Legal Information Sharing) [4] projects. In

the SALEM project a small ontology was built to cover

eight legislative provision types, including three major

categories such as obligations, definitions and

modifications. The goal of the project was to assign each

law paragraph a given provision type, and to annotate parts

of paragraphs with semantic roles identifying legal entities

(e.g. actors, actions and properties) referred to in the

provision. In the LOIS project a multilingual ontology was

created by localizing WordNets to Italian, English,

German, Czech, Portuguese and Dutch languages. The

main purpose of this project was to allow cross-lingual

retrieval across different national collection of laws. [5]

used LOIS for query expansion, focusing on the

terminology for the same legal jurisdiction. In this

approach one or two words provided in the query are

searched in the KB, and a weighting applied: a weight of 1

is given for synonyms of a term, a weight of 0.5 is given

for subterms, and a weight of 0.25 is given for all

meaningful terms mentioned in a definition.

In contrast to these approaches, we present a semantic

search system that allows to formulate queries using

arbitrary combination of KB concepts, having more than

two concepts, and makes use of WordNet hierarchies to

build such queries. In addition we enrich WordNet with

specialized glossaries from the legal domain and domain

specific concepts from legislation websites.

3. Multilingual Wordnet

1
 http://jurix.nl/

2
 http://sites.sandiego.edu/icail/

3
 http://trec-legal.umiacs.umd.edu/

4
 https://sites.google.com/site/splet2014workshop/

Princeton Wordnet (WN) [6] is the original open source

WordNet project developed for English, which has over

150,000 concepts. As a resource, a WN is a huge net,

consisting of nouns, verbs, adjectives and adverbs, that are

grouped into sets of synonyms (called synsets), each

expressing a distinct concept. Synsets are also interlinked

through various relations such as antonymy, meronymy (is

part of), holonymy (opposite of meronymy), hypernymy

(is kind of) and hyponymy (opposite of hypernymy). Over

the past few decades various projects have been developed

to build WNs for different languages [7]. One example is

the Open Multilingual WordNet [8], an open source

multilingual resource, which contains over 2 million

senses, distributed over 150 languages, all linked to

Princeton WN. Out of the available languages, the CSs

Framework makes use of the Arabic [9], Spanish [10],

French [11], German [12], Portuguese [13], and English

languages.

The selected WNs were further analyzed and converted

into language models, fully connected object oriented

models.

In addition, further adjustments have been made to the

English language model to tailor it to the legal domain.

Similar developments will be done for the other languages

in the future. Firstly, domain experts were asked to review

the synonym hypernymy trees of each concept defined in

the requirements (e.g. for the retention requirement: all

synonyms of document types, time expressions) and

exclude senses that are irrelevant in the legal context.

Secondly, a list of legislation sources were researched to

identify domain specific glossaries and legitimate sources

that define domain specific concepts (e.g. the FCA

glossary, UK Companies Act, and the https://www.gov.uk/

website). These concepts were then added to the English

language model.

Fig. 1 Wildcards used in templates.

4. The Concept Strings Framework

In this section we describe our approach for extracting and

matching CSs in legal corpora, called the Concept Strings

Framework, written in C#. A CS contains an array of WN

concepts, each annotated with an array of possible

meanings and its inferred part-of-speech (POS). The

elements of CS can be combined with wildcards, such

expressions are called templates. Wildcards are special

selections of symbols that indicate that a match can be

made with a certain number of words of a particular type

(e.g. noun, verb, adjective, adverb, modal verb). A list of

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

19

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

possible wildcards are shown in Figure 1. To create a short,

concise template set, template variables (introduced by $)

can be used. These elements allow the definition of a

group of repeated concepts that can then be referenced

inside the templates. For example we can define the

following template (displayed in Figure 2) keep *0

$documenttypes *0 $timeexpressions, where “keep” stands

for the verb keep, meaning “retain possession of”, “*0”

denotes any or no concept, and $documenttypes

$timeexpressions are two template variables.

$documenttypes can be any of the following concepts =

{document, information, content}, while $timeexpressions

can be = {day, month, year}. The main goal of this

template is to match sentences such as “the firm must keep

documents for three years”. The proposed XML language

for the retention template set looks as follows:

<templates>

<language>en</language>

<variables>

 <variable>

<name>$documenttypes</name>

<variableconcept>

 <source>content</source>

 <pos>

 <postype>noun</postype>

 <word>content</word>

 <concept><ref>6611268</ref>

 <description>what a

communication ...

 </description>

 </concept>

 </pos>

</variableconcept> ...

 <variable>...

</variables>

<template>

 <source>keep *0 $documenttypes *0 $timeexpressions

</source>

 <pos><postype>mathsymbol</postype>

 <word>$documenttypes</word>

 <concept><ref>20000257</ref>

 <description>...</description>

 </concept></pos>

</template>...

</templates>

The pre-processing of sentences is done using standard

NLP pipeline, including tokenization, stemming, and part-

of-speech (POS) tagging
1
. Given a pre-processed text, the

pattern matching engine will match sentences where the

words in the text are textually the same with the words

defined in the template, and the POS of the words in the

1
 we use Stanford POS tagger

text agrees with the POS of words defined in the template.

Furthermore, a match can be made for each pair of

concepts from each word pair in the matching sequence, if

the concepts share some similarities based on the

hypernymy trees in WN. This is done by searching

through the neighborhood of trees to examine if a concept

is the parent of the other or if they have a near mutual

ancestor. For example, for the above template, we will also

match sentences where the word keep is replaced with its

synonyms: held, maintain, store, file or retain (including

all the three forms of the verbs).

Fig. 2 Example retention template.

The CSs Framework has a data structure called a Concept

Tree that efficiently holds sets of templates and permits

them to be matched against text. Effectively the text is

read in as a stream and the trees is passed over it. The

Concept Tree matches the incoming text against directly

and against the hypernymy tree, while considering

multiple templates and the many virtual paths that

wildcard handling creates.

5. The Template Editor

The Template Editor follows a simple yet powerful web-

based architecture. The editor is written in C# using MVC

design pattern and uses Microsoft SQL Server to store the

data. It is tested on Internet Explorer, Firefox, and Chrome

browsers.

5.1 Template Creation and Editing

Figure 2 shows a screen shoot of the user interface for

template creation and editing for a given language (e.g.

English). The interface is split into three main parts. The

top left corner shows the existing templates defined in the

current template set, and allows the editing of templates.

The right part displays a list of available operations that

can be done on a template set: e.g. creation of a new

template (Add new button), removal of a template from a

template set (Remove button), permutation of a template

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

20

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

(Apply Permutation button), and analysis of concepts

referenced in the template set (Analyse Concepts button -

see section 6.2). When editing a template two options are

available: Show All Senses, which generates a new set of

concepts holding all possible meanings, and Show

Existing Senses, which displays senses that were already

used in previous templates, reducing the number of

possible senses to be chosen for a given concept.

Generally several templates are created for a given

requirement because one template specifies one sequence

of concepts (one idea), and often an idea can be expressed

using a different concept order. In order to help annotators

create all possible combination of concept orders, the

Apply Permutation button was developed, which

automatically transforms an active voice template into its

passive voice counterpart. For instance, for the template

keep *0 $documenttypes *0 $timeexpressions, the

$documenttypes *0 keep *0 $timeexpressions, (matching

the sentence “documents must be kept for three years”),

and the $timeexpressions *0 $documenttypes *0 keep

(matching the sentence “for a period of three years

documents must be kept”) templates are created.

The center part visualizes the currently selected template

using the concept string diagram. The diagram follows

changes in the text of the template and interactively

permits the user to determine the meaning of the concept.

Hovering over a concept brings up a tooltip with the

concept definition, and clicking on a concept will delete

the concept that is not the one sought. After each edit, the

templates can be saved by pressing the Save changes

button, and the final template set downloaded, using the

Download button.

5.2 Template Analysis and Reduction

One of the main benefits of the CSs Framework is that in

order to find all the synonyms of a given concept in a text,

it is enough to define only the most generic concept in the

templates. This allows the template set to be short, and

easily manageable. In the first corpus analysis phase,

where annotators collect relevant concepts for a given

template set, there is a need to analyze the collected

concepts to examine which ones to keep. This

functionality is provided in the Template Analysis tab,

shown in Figure 3.

Fig. 3 Analyzing noun concepts used in the retention requirement
(template set).

The interface allows the inspection of concept hierarchies

based on POS. Two operations are available: analysis of

concepts defined in a given template set (Analyse All

Concepts button) and comparison of new concepts with

the template concepts (New concepts textbox and Analyse

New Concepts button). In both cases, the hierarchy of

concepts is displayed for the selected concepts.

Disconnected concepts, concepts that don’t share any

relationship with each other, are shown in a horizontal line

one after another, while concepts that are children of

another concept are displayed vertically just below the

parent concept. For this reason it is enough to only keep in

the template set concepts that are at level 1 on the diagram.

In the example provided in Figure 3, we can see that

record is a child of document, while day, year, and month

are children of time period, and therefore only document

and time period are kept in the template set.

In addition to performing the manual analysis, there is also

the possibility to remove duplicate templates automatically

by pressing the Reduce Template button. An algorithm

was developed that deletes templates that have same

sequence of concepts as an existing template, or a

sequence where one or more of the concepts are children

of the matching concepts in another template, and the rest

are the same. For example, in the template set with

sequences A, B; A1, B2; A2, B1; A3, B3, where A and B

are two concepts with child concepts A1, A2, and A3, and

B1, B2 and B3 respectively, the last 3 templates are

deleted.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

21

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 4 Analyzing of template coverage for the retention requirement

(template set).

5.3 Template Coverage

Having the template set created, the next step consists in

evaluating it on real word text. For this purpose the

Template Coverage editor (shown in Figure 4) was

developed that provides an in-depth analysis of the results

by highlighting the matched results, which we call extract,

in colors (the whole matched phrase in green, while the

matched concepts using various colors), and by inspecting

the coverage of the template set. For the matched concepts

a tooltip is also displayed, showing the parent concept for

the concepts (e.g. store is a child of (->) keep). The main

goal of the editor is to display all mentions of concepts of

a given type: e.g. all document concepts (Document

synonym concepts checkbox), all time expressions (Time

expressions checkbox), and all verb concepts (main Verb

synonyms checkbox - for the retention template the main

verbs are keep and preserve). This allows to detect

concepts that are not covered by the template set (not

highlighted as a known concept type by the editor), and

thus must be added to it (e.g. insurance log in the example

provided in Figure 4). Furthermore, there is also the

possibility to highlight words that are not found in WN

(Not found in WordNet checkbox), that can be used to

extend the language model for the language used by the

template set.

6. Evaluation of Concept Strings

We used the Template Editor for an experimental analysis

of CSs. The analysis had two major goals: to validate the

effectiveness of CS extraction and to identify common

error classes. In the evaluation we focused on finding all

relevant information, favoring recall instead of precision.

We defined two qualitative categories for the evaluation of

CSs: “Relevant” (REL) and “Irrelevant” (IRREL). We

labelled a matched result as REL if it is semantically

correct and applies to financial companies. A match is

semantically correct if the matched concepts are

semantically related (e.g. the document concept is the

direct object of the verb keep; the time expression refers to

the document concept to be retained). Correspondingly, we

labelled a result as IRREL if it is semantically wrong or

does not apply to financial companies.

Table 1: Legislation sources used in the experiments. #Res stands for

number of extracts, #Sent for the average number of sentences per page.

Sources #Res #Sent #REL #IRREL

Comp. Act 35 123 14 21

FCA 106 289.01 66 40

Two different sources were used in the experiments: the

UK Companies (Comp.) Act from 2006, where 35 results

were found from 14 out of 1,695 pages, and the FCA

Handbook with 106 results found from 66 out of 3,655

pages. The results were compared against manual

annotations done by domain experts. In all cases we can

see that the CSs Framework significantly reduces the

number of pages and extracts to be reviewed, easing the

tedious and costly task of reading thousands of pages.

More importantly, the framework returned all relevant

information previously found by the experts manually,

resulting in 100% recall on both websites. In terms of

precision, as shown in Table 1, we can observe that it

performed better on handbooks, achieving 62.26%

precision (76.74% F1), and it performed less well on the

Companies Act, reaching 40% precision (57.14% F1).

The evaluation was performed by two domain experts,

who identified four main error types: two of the cases

relate to the correctness of concept synonyms (ErDoc,

ErVerb), one relates to syntactical error (ErPOS), and

another one encompasses semantic mistakes in the

matched concept sequence (ErSem). The inter-annotator

Kappa agreement between the annotators was 0.85. The

average tagging speed was 8 minutes per extract.

Table 2: Distribution of error classes in the two sources analysed.

Errors ErDoc ErVerb ErPos ErSem

Comp. Act 11 11 5 18

FCA 19 34 7 39

The distribution of error classes is presented in Table 2.

The most common error type found is ErSem, where the

verb and the document concept are not semantically

related. One typical example is when the results span

across several sentences, such as in “Explanatory Notes

(1)Every public company must hold a general meeting as

its annual general meeting in each period of 6 months, (2)

. . . ”. In such cases an enumerator extractor needs to be

employed that correctly identifies the sentence boundaries,

and the CSs Framework must be constrained to only

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

22

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

consider concepts that are within a single sentence.

Building an enumerator extractor is however a challenging

task due to the various enumeration formats employed in

legislation, and the irregular capitalization used inside the

enumerations. Furthermore, to ensure that the document

concept is the direct object of the verb (the notes are held),

deep semantic analysis, a dependency parser will need to

be applied. The second most common error type is ErVerb,

where the meaning of the matched verb is not keep or

preserve. For example, in the sentence “The report must

set out the steps the HRA has taken during the year”, take

is a wrong synonym of keep. This error can be corrected

by applying a word sense disambiguation (WSD) system.

Such system is aimed to be incorporated into CSs

Framework in the future. Similarly, the ErDoc error occurs

when the meaning of the matched noun concept is not

document. For example, in the sentence “In this case, the

firm can store insurance logs for three years”, case is a

wrong synonym of document. This error can also be

corrected by a WSD system. Common to both error types

are the mistakes done by the POS tagger. For example in

the sentence “If, the firm has not been trading for three

months in a business line, then it must use the records that

are available to it and must also factor in reasonable

forecasts, to make up a three month reference period.”,

trading is a verb instead of noun (synonym of document),

and records is a noun instead of verb (synonym of keep).

In order to address this case, the POS tagger will need to

be improved.

7. Conclusions

This paper presented the CSs Framework, a semantic

search system in the legal domain that makes use of CSs to

match sequences of text with the same meaning. The

creation, editing and evaluation of CSs was enabled using

an interactive web-based toolkit, the Template Editor.

Experimental results demonstrated that our approach

works well in finding relevant information, being able to

return all examples previously found by domain experts by

hand, reaching 100% recall. Future work will include the

followings: a) implementation of an enumeration extractor

that helps identify the sentence boundaries b)

implementation of a WSD system that helps filtering out

wrong results c) incorporation of a dependency parser into

the CSs Framework for obtaining the direct object of verbs

in a sentence, ensuring that the matched concepts are

semantically related (e.g. the document concept is the

direct object of the verb) , and d) extension of the

evaluation to other requirement types and languages.

Acknowledgments

The authors wish to thank the domain experts for their

help in evaluating the Concept Strings Framework.

References
[1] A. Edmonds. Using concept structures for efficient document

comparison and location. In Proceedings of IEEE

Symposium on Computational Intelligence and Data Mining,

2007.

[2] C. Soria, R. Bartolini, A. Lenci, S. Montemagni, and V.

Pirrelli. Automatic extraction of semantics in law documents.

In Proceedings of the V Legislative XML Workshop, 2007.

[3] R. Bartolini, A. Lenci, S. Montemagni, V. Pirrelli, and C.

Soria. Automatic classification and analysis of provisions in

Italian legal texts: a case study. In Proceedings of OTM

Confederated International Conferences, 2004.

[4] L. Dini, W. Peters, D. Liebwald, E. Schweighofer, L.

Mommers, and W. Voermans. Cross-lingual legal

information retrieval using a WordNet architecture. In

Proceedings of the 10th international conference on Artificial

intelligence and law, 2005.

[5] E. Schweighofer, and A. Geist. Legal query expansion using

ontologies and relevance feedback. In Proceedings of the 2nd

Workshop on Legal Ontologies and Artificial Intelligence

Techniques, 2007.

[6] G. A. Miller. Wordnet: A lexical database for english.

Commun. ACM, 1995.

[7] F. Bond, and K. Paik. A survey of wordnets and their

licenses. In Proceedings of the 6th Global WordNet

Conference, 2012.

[8] F. Bond, and R. Foster. Linking and extending an open

multilingual wordnet. In Proceedings of the ACL.

Association for Computational Linguistics, 2013.

[9] W. Black, S. Elkateb, and P. Vossen. Introducing the arabic

wordnet project. In Proceedings of the third International

WordNet Conference, 2006.

[10] A. F. Montraveta, G. Vazquez, and C. Fellbaum. The

spanish version of wordnet 3.0. In Text Resources and

Lexical Knowledge, 2008.

[11] B. Sagot, and D. Fier. Building a free French wordnet from

multilingual resources. In Ontolex, 2008.

[12] B. Hamp, and H. Feldweg. Germanet - a lexical-semantic

net for german. In Proceedings of ACL workshop Automatic

IE and Building of Lexical Semantic Resources for NLP

Applications, 1997.

[13] V. dePaiva, and A. Rademaker. Revisiting a brazilian

wordnet. In Proceedings of Global Wordnet Conference.

Global Wordnet Association, 2012.

Andrea Varga received the BSc in computer science from the Babes-Bolyai
University in 2007, the MSc degree in Intelligent Systems from the Babes-
Bolyai University in 2008, and the PhD degree in text mining from the
University Of Sheffield in 2015. She is currently a data scientist at The
Content Group, United Kingdom, working on text mining. Her research
focuses on natural language processing (text classification, topic
classification, semantic search, social network analysis, and semantic web).
Andrew N. Edmonds received the PhD degree in artificial intelligence from
the University of Bedfordshire in 1996. He is currently a data scientist at Dr
Andy’s IP Ltd. His research focuses on natural language processing (text
classification, word sense disambiguation, and semantic search) and chaos
theory.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

23

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

