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Abstract 
Petri Net is a formalism to describe changes between 2 or more 

states across discrete time and has been used to model many 

systems. We present PNet – a pure Python library for Petri Net 

modeling and simulation in Python programming language. The 

design of PNet focuses on reducing the learning curve needed to 

define a Petri Net by using a text-based language rather than 

programming constructs to define transition rules. Complex 

transition rules can be refined as regular Python functions. To 

demonstrate the simplicity of PNet, we present 2 examples – 

bread baking, and epidemiological models. 

 

Keywords: Network modeling, Time-step simulation, Petri 

Net, Ordinary Differential Equation, Python.  

1. Introduction 

Petri Nets are tools designed by C. A. Petri to model 

concurrent systems, as graphical representations and 

mathematical modeling tool for system of events [1-3]. 

The use of Petri Nets allows formal analysis of the model 

or process that is being depicted [1-3]. Petri Nets are 

populated by three types of objects – places, transitions 

and arcs [1-3]. A place is an input position that is 

connected to another transition via an arc. Place is usually 

depicted by circles and transitions as bars [1-3]. 

 

Petri Nets are often used for software engineering [4], 

system modeling [5] and even in biochemistry; such as 

biochemical reactions [6], signal transduction networks [7] 

and gene regulation networks [8]. An example of the use 

of Petri Nets is by Liu and Heiner [9] where they 

investigate biochemical reaction networks with the use of 

unifying Petri Net framework to model and analyze such 

networks [4]. This is because the properties of the 

processes can be studied: Terminating, Reachability, 

Safeness, Boundedness, Liveness, Reversibilty and Home 

State, Coverability, Persistence and Fairness [1]. Such 

properties can be studied [1] using Coverability tree 

method, Reachability Graphs and Incidence Matrix and 

State Equation. 

 

There are libraries developed for modeling Petri Nets, such 

as SimForge GUI [10] incorporated within OpenModelica, 

and Petri Net Simulink Block (PNSB [11]) for MATLAB. 

SNAKES had been developed by Pommereau [12] as a 

library for implementing Petri Nets in Python 

programming language. SNAKES [12] adopts a high-level 

of object-oriented programming as tokens and all 

transition rules are implemented as Python objects. 

Although this provides flexibility, it may present as a 

steeper learning curve. It may be considerably more 

difficult to translate a text-based Petri Net specification 

into a model in SNAKES. At the same time, SNAKES [12] 

does not cater for complex transition rules that can only be 

implemented as a function. However, a strong advantage 

of SNAKES [12] is the incorporation of plugins, Petri Net 

analysis tools, and the ability to convert implemented Petri 

Nets into C language. 

 

In this work, we present PNet an alternative pure Python 

library for Petri Net modeling by reducing its object-

oriented programming overheads to its minimum, and 

adding Python functions as an alternative type of transition 

rule. Hence, PNet is likely to reduce the learning curve 

needed for a beginner to start experiencing Petri Nets 

before transitioning to more extensive library, such as 

SNAKES [12]. PNet has been incorporated into COPADS 

(https://github.com/mauriceling/copads), a library of 

algorithms and data structures, developed entirely in 

Python programming language and has no third-party 
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dependencies. Future work aims to implement a GUI for 

improved usability and tools to analyze Petri Nets. 

2. Description of PNet 

In this section, we will describe PNet by using the steps 

required to write a simulation. There are 5 steps to writing 

a Petri Net simulation using PNet – establishing a Petri 

Net, adding places or states, adding transition rules, 

simulating the Petri Net, and generating the results file. 

 

A Petri Net is established by importing PNet as a module 

and instantiating the PNet class within the imported 

module. This is followed by adding of places or states into 

the Petri Net using add_places method, which takes 2 

parameters – the name of the place and a dictionary 

representing the initial tokens, where the dictionary key 

and value is the name of the token and the number of 

named tokens respectively. This allows for a place/state to 

have more than 1 type of tokens. For example, a mixed 

bowl of 100 red and green beans each can be stated as 

 
net.add_places('bowl',  

               {'red_beans': 100,    

                'green_beans': 100}) 

 

However, there are situations whereby an infinite source or 

sink is needed; for example, the number of people to be 

born may be virtually infinite. In electronics, Earth is 

considered an infinite source of positive and negative 

charges. To cater for this need, a special place known as 

ouroboros (ouroboros is the name for the “infinity” 

symbol in mathematics) is defined with an infinite number 

of “U” tokens. 

 

The third step is the addition of transition rule(s), using 

add_rules method. Each transition rules is named. 

Transitions are channels where the tokens move from a 

place to another, whereas the rules determine how the 

move occurs. Generally, a transition rule consists of a 

source place and destination place to direct the tokens, 

source token type for identification purpose and 

destination token type for getting a precise result. The 

processes of transitions rules will then be checked against 

the find value of tokens, using logical operators. The 

logical operators of the checks are determined by 

criterions, which are also known as the intended result 

after the going through the transitions. 

 

There are 5 types of rules: step, ratio, delay, incubate, and 

function rules. The execution/firing of transition rules is 

time-step dependent. Although in the strictest sense, each 

rule should define only one transition; in practice, a single 

rule can trigger 1 or more transitions as it is possible to 

specify more than 1 transition in a rule. This can be seen as 

a syntactic shorthand provided by PNet. 

 

Step rule based on a step-wise execution where the rule 

will be triggered at every time-step. The origin place and 

the token at the origin place have to be indicated; at the 

same time, the destination place and the affected token at 

the destination place must be specified. This represents a 

single transition. For example, given a bowl of red and 

green beans each, the following step rule defines the 

swapping of a bean at each time step, 

 
net.add_rules('swap_bean, 'step',  

  ['B1.red_bean -> B2.red_bean; 1', 

   'B2.green_bean -> B1.green_bean; 1']) 

 

Ratio rule is also a step-wise execution. Both step and ratio 

rules have similar parameters, with the difference of using 

the ratio of tokens to trigger the execution. The ratio that is 

intended for the transition is indicated, which will be 

check by a logical operator against the limit indicated. 

This can be used to define increasing or decreasing 

number of tokens moved. For example, given that there are 

2 bowl (B1 and B2) where B1 contains all the red beans 

and B2 is an empty bowl, moving 10% of the remaining 

red beans in B1 to B2 can be defined as follow, 

 
net.add_rules('swap_ratio', 'ratio',  

    ['B1.red_beans -> B2.red_beans; 0.1; \ 

     B1.red_beans < 1; 0']) 

 

Delay rule is a step rule with time interval between each 

token movement. In effect, delay rule can be used to 

produce a regular spiking movement. For example, 

moving 10 beans from bowl B1 to B2 once every 5
th

 time 

step, can be defined as 

 
net.add_rules('interval_transfer’, 'delay',  

    ['B1.beans -> B2.beans; 10; 5']) 

 

Incubation rule can be seen as a “do nothing for a period 

of time before a specific action”. It requires a value and a 

timer, which has a logical check within to make sure that 

the conditions are met before sending to the destination 

place. For example, soaking a bowl of beans for 60 time 

steps (such as 60 minutes) once water is added, and 

transfer the soaked beans into a pot after soaking for 60 

time steps, can be defined as 

 
net.add_rules('soak', 'incubate',  

    ['60; bowl.beans -> pot.beans; \  

     bowl.water > 0']) 

 

Function rule is a user-defined condition. Usually, function 

rules are used when the previous 4 rules do not fit the 

user’s requirement. However, all forms of transition rules 
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can be written as function rule; thus, function rule is the 

superset. Another common application of function rule is 

to change the type of tokens from one type to another. The 

variations between the transition rules are the conditions 

that trigger of the transition rules. The origin and 

destination place together with the initial token and the 

final token are required for the computation. For example, 

the above ratio rule 

 
net.add_rules('swap_ratio', 'ratio',  

    ['B1.red_beans -> B2.red_beans; 0.1; \ 

     B1.red_beans < 1; 0']) 

 

can be written as the following function rule, 

 
def bean_swap(places): 

    place = places['B1'] 

    n = place.attributes['red_beans'] 

if n > 0.0:  

    return 0.0 

else:  

    return 0.1 * n 

net.add_rules('swap_ratio', 'function',  

    ['B1.red_beans -> B2.red_beans’,  

     bean_swap, 'B1.red_beans > 0']) 

 

Function(s) to be used in function rule(s) takes only one 

parameter, places, which is the dictionary of 

states/places in PNet. Each state/place can be accessed 

using the name of the state/place as key to the places 

dictionary. Tokens linked to a particular state/place are 

implemented as an attributes dictionary and be 

accessed using the name of token. 

 

After rules definition, the fourth step is to simulate the 

Petri Net using simulate or simulate_yield 

method. The rules mentioned above will then be executed, 

by setting the wall time of current simulation and the 

interval. The wall time will be check against the rules to 

ensure that it fulfills the time interval indicated. 

 

The simulate method will stores the simulation results 

in the memory space; thus, increased intervals of reporting 

causes more reports to be generated, which causes memory 

to run out at a faster rate. On the other hand, 

simulate_yield method is a generator function, 

which does not pre-store all the simulation results in 

memory. The parameters of simulate method are length 

of time to simulate, time step, and reporting frequency. 

However, simulate_yield method only requires 

length of time to simulate, and time step. 

 

Finally, PNet provides a method to process the simulation 

results into a format suitable for CSV file output. The 

reports will be generated with each step count of current 

simulation, in the memory of each token status. The status 

of the tokens can be also report by generating a list 

representing the status from one step or the entire 

simulation. 

 

Simulation and reporting are usually related to each other. 

For example, the following code snippet demonstrates the 

simulation and report generation using both simulate or 

simulate_yield method: 
 

length_of_simulation = 100 

timestep = 1 

report_frequency = 1 

# for simulate method 

net.simulate(length_of_simulation,  

             timestep, report_frequency) 

status = net.report_tokens() 

     

# for simulate_yield method 

status = [d for d in  

  net.simulate_yield(length_of_simulation,  

                     timestep)] 

status = [(d[0], net.report_tokens(d[1]))  

          for d in status] 

3. Examples 

Two examples are presented to illustrate the use of PNet. 

The first example is a light-hearted example of bread 

baking while the second example is a more serious but 

simple model of epidemiology. 

 

Example 1: Bread Baking. In this example, a bread 

baking recipe was modeled (see Appendix A for 

implementation) and simulated for 90 time steps. It is 

worth noting that this recipe utilized all features of PNet 

except the use of infinite tokens from Ouroboros. This 

recipe calls for 1000 g of flour, 500 g of water, 20 g of 

sugar, and 1 g of yeast in the following steps: 

 

1. Turn on the mixer and add 100 g of flour, 50 g of 

water, and 2 g of sugar at each time step. Add 0.5 g of 

yeast into mixer with 5 time step interval in between 

each addition.  

2. In each time step, the mixer will turn 80 g of flour, 40 g 

of water, 1.5 g of sugar, and 1 g of yeast into dough. 

3. After mixing is completed, leave dough to rise in mixer 

for 10 time steps.  

4. Transfer dough into pan, and leave dough to rise in pan 

for another 10 time steps.  

5. Bake at 400
o
C. In each time step, 30% of the remaining 

dough will be baked into bread. Baking is completed 

when there is less than 1 g of dough remaining. 

6. Transfer the bread to the table for cooling. In each time 

step, 10% of the heat will dissipate until room 

temperature of 30
o
C is reached. 

7. Enjoy your bread. 
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Fig. 1 Token Values in Bread Baking Simulation. Graph A shows the 

mixing of ingredients into bread dough and the rising of the dough. 
Graph B re-illustrate the rising of the dough and continue through the 

baking and cooling process. 

Steps 1 and 2 are the addition and mixing the ingredients 

into bread dough. The rate of dough formation is slower 

than the rate of ingredients addition; for example, 100 g of 

flour and 50 g of water are added into the mixer per time 

step but only 80 g of flour and 40 g of water are converted 

to dough. This results in the accumulation of 20 g of flour 

and 10 g of water in the mixer until all flour and water are 

added (as seen in the mixing stage in Figure 1A); after 

which, the accumulated flour in the mixer is converted into 

bread dough. Once all ingredients are mixed into bread 

dough, it undergoes 2 stages of rising (Steps 3 and 4). 

After which, the dough is being baked at 400
o
C (Step 5). 

The baking process is represented as transferal of 30% of 

the dough tokens into bread tokens at each time step. Once 

the bread is baked as represented by negligible remains of 

dough (less than 1 g), the bread is transferred to a table and 

cooled (Step 6). The cooling from 400
o
C to room 

temperature of 30
o
C is represented by another function. 

 

Example 2: Epidemiological Models. Epidemiological 

Models are frameworks of ecological and epidemiological 

phenomena that are often used to study interactions 

between the host and the pathogen [13]. Epidemiological 

models have proven useful for the study of evolutionary 

dynamics of evolutionary dynamics and predicting 

properties of the spread of pathogen like prevalence and 

duration [13]. Alphabet models are frameworks of a 

population whereby susceptible individuals are considered 

to be invaded by an infectious agent [13].  The population 

is divided into three epidemiological subclasses: S denotes 

susceptible to diseases, I denotes number of infected 

individuals and R denotes number of individuals who at 

time no longer contribute to spread of diseases [13].  

 

The Susceptible-Infectious-Susceptible (SIS) model is 

predicated on the pathogen infects susceptible humans, 

resulting in an infection and recovers from infection and 

returns back to the susceptible class again [14]. Infectious 

hosts recover at a constant per capita rate, γ and β is the 

rate of infection of the susceptible class [14]. SIS model is 

for fast evolving virus and infections that do not provide 

immunity [14]. The Susceptible-Infectious-Recovered 

(SIR) model is similar to SIS model except that the 

pathogen leads to lifelong immunity [15]. The individuals 

who were infected and recovered from infection are 

immune to reinfection, possessing lifelong immunity [15]. 

This model is used for viral diseases such as measles, 

mumps and rubella [14]. The Susceptible-Infectious-

Recovered-Susceptible (SIRS) model is similar to that of 

SIR model, except that the immunity that are acquired is 

temporary [16]. The individuals who were infected and 

recovered from infection are not immune to reinfection 

[14]. Example of such infection modeled by SIRS is 

tuberculosis [16]. 

 

However, it is common for most epidemiological models 

to be implemented as a system of ordinary differential 

equations (ODEs) [17-20]. ODEs and Petri Net are two of 

the most common mathematical constructs for 

mathematical modeling [21]. Hence, a method to represent 

an ODE in the form of Petri Net notation is needed and the 

correspondence between ODE and state-transition network 

is provided by Soliman and Heiner [22]. Briefly, an ODE 

models the change of a state over time while Petri Net 

models the movement which results in the change of state 

over time (Figure 2). In the context of states (nodes) and 

transitions (arcs), this suggests that ODEs models the 

nodes while Petri Net models the transitions, which gives 

rise to an easy conversion between ODE representations 

and Petri Net representations, assuming that the unit for 

time is the same under both representations. 

 

 

Fig. 2 Correspondence between Ordinary Differential Equation and Petri 
Net Transition Rule.  
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Fig. 3 SIS Epidemiological Model.  

 

 

 

Fig. 4 SIR/SIRS Epidemiological Model.  

 

Hence, the standard system of ODEs for SIRS [17, 18] can 

be readily converted into Petri Net representations (Figures 

3 and 4). The implementation of SIRS model using PNet is 

given as Appendix B. 

 

 

 

Fig. 5 Schematics of a Data Frame.  

Our simulation results show that the proportion of infected 

population and susceptible population reaches equilibrium 

over time (Figure 5a). As there is also no immunity 

conferred after recovery, it is expected to have a constant 

infected population [23], also known as endemic 

population. This is under the assumption that there are no 

birth and death for the entire duration, and the disease is 

not death causing. When there is immunity as a result of 

recovery, SIS model becomes SIR model where the 
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population gradually becomes fully immune if there is no 

additional birth (Figure 5b). This is similar to the case of 

chickenpox [24], which confers lifelong immunity to most 

recovered patients, leading to children being most 

susceptible to chicken pox and most adults immune. 

However, if the conferred immunity is temporary, re-

infection is possible and this leads to SIRS model from 

SIR model (Figure 5b). Our results show that SIRS model 

behaves in similar manner compared to SIS model where 

there is a constant pool of infected (endemic) individuals 

[25]. In spite of this, there is also a constant pool of 

immune individuals whom had recently recovered from 

the disease. This is expected when the infection agent can 

re-infect a recovered person. 
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Appendix A: Code for Bread Baking 

 
import pnet 

 

net = pnet.PNet() 

 

# The ingredients 

net.add_places('flour', {'flour': 1000}) 

net.add_places('water', {'water': 500}) 

net.add_places('sugar', {'sugar': 20}) 

net.add_places('yeast', {'yeast': 1}) 

 

# The "utensils" 

net.add_places('mixer', {'flour': 0,    

     'water': 0, 'sugar': 0,  

     'yeast': 0, 'dough': 0}) 

net.add_places('pan', {'dough': 0}) 

net.add_places('oven', {'dough': 0,  

    'bread': 0}) 
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net.add_places('table', {'bread': 0,  

    'temperature': 400}) 

net.add_places('air', {'heat': 0}) 

 

# The steps 

net.add_rules('add_flour', 'step',  

    ['flour.flour -> mixer.flour; 100']) 

net.add_rules('add_water', 'step',  

    ['water.water -> mixer.water; 50']) 

net.add_rules('add_sugar', 'step',  

    ['sugar.sugar -> mixer.sugar; 2']) 

net.add_rules('add_yeast', 'delay',  

    ['yeast.yeast -> mixer.yeast; 0.5; 5']) 

net.add_rules('blend', 'step',  

    ['mixer.flour -> mixer.dough; 80', 

     'mixer.water -> mixer.dough; 40', 

     'mixer.sugar -> mixer.dough; 1.5', 

     'mixer.yeast -> mixer.dough; 1']) 

net.add_rules('rise', 'incubate',  

    ['10; mixer.dough -> pan.dough; \  

     mixer.flour == 0; mixer.water == 0; \  

     mixer.sugar == 0; mixer.yeast == 0']) 

net.add_rules('set', 'incubate',  

    ['10; pan.dough -> oven.dough; \  

     pan.dough > 0']) 

net.add_rules('bake', 'ratio',  

    ['oven.dough -> oven.bread; 0.3; \ 

     oven.dough < 1; 0']) 

net.add_rules('transfer', 'incubate',  

    ['1; oven.bread -> table.bread; \ 

     oven.dough == 0']) 

def cooling(places): 

    place = places['table'] 

    temp = place.attributes['temperature'] 

    if temp <= 30.0: return 0.0 

    else: return 0.1 * temp 

net.add_rules('cool', 'function',  

    ['table.temperature -> air.heat',  

     cooling, 'table.bread > 0']) 

 

# Bake the bread !!! 

net.simulate(90, 1, 1) 

 

# Generate results file 

data = net.report_tokens() 

headers = ['timestep'] + data[0][1] 

 

f = open('bread.csv', 'w') 

f.write(','.join(headers) + '\n') 

for tdata in data: 

    tdata = [tdata[0]] + \ 

            [str(x) for x in tdata[2]] 

    f.write(','.join(tdata) + '\n') 

f.close() 

 

 

Appendix B: Code for SIRS Model 
 

import pnet 

 

infection = 0.01 

recovery = 0.005 

resusceptible = 0.01 

 

net = pnet.PNet() 

 

net.add_places('susceptible',  

    {'susceptible': 100}) 

net.add_places('infected',  

    {'infected': 0}) 

net.add_places('recovered',  

    {'recovered': 0}) 

 

def susceptible_infected(places):  

    place = places['susceptible'] 

    susceptible = \ 

        place.attributes['susceptible'] 

    return infection * susceptible 

     

def infected_recovered(places): 

    place = places['infected'] 

    infected = place.attributes['infected'] 

    return recovery * infected 

     

def recovered_susceptible(places): 

    place = places['recovered'] 

    recovered = \ 

        place.attributes['recovered'] 

    return resusceptible * recovered 

     

net.add_rules('infection', 'function',  

    ['susceptible.susceptible -> \ 

     infected.infected',  

     susceptible_infected,  

     'susceptible.susceptible > 0']) 

net.add_rules('recovery', 'function',  

    ['infected.infected -> \ 

     recovered.recovered',  

     infected_recovered,  

     'infected.infected > 0']) 

net.add_rules('resusceptible', 'function',  

    ['recovered.recovered -> \ 

     susceptible.susceptible',  

     recovered_susceptible,  

     'recovered.recovered > 0']) 

 

net.simulate(500, 1, 1) 

 

data = net.report_tokens() 

headers = ['timestep'] + data[0][1] 

 

f = open('sirs.csv', 'w') 

f.write(','.join(headers) + '\n') 

for tdata in data: 

    tdata = [tdata[0]] + [str(x) for x in 

tdata[2]] 

    f.write(','.join(tdata) + '\n') 

f.close() 
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