

PNet: A Python Library for Petri Net Modeling and Simulation

Zhu En Chay

Colossus Technologies LLP, Republic of Singapore

chayzhuen@colossus-tech.com

Bing Feng Goh

Singapore Institute of Technology, Republic of Singapore

gohbingfeng@gmail.com

Maurice HT Ling

Colossus Technologies LLP, Republic of Singapore

School of BioSciences, The University of Melbourne, Australia

mauriceling@colossus-tech.com

Abstract
Petri Net is a formalism to describe changes between 2 or more

states across discrete time and has been used to model many

systems. We present PNet – a pure Python library for Petri Net

modeling and simulation in Python programming language. The

design of PNet focuses on reducing the learning curve needed to

define a Petri Net by using a text-based language rather than

programming constructs to define transition rules. Complex

transition rules can be refined as regular Python functions. To

demonstrate the simplicity of PNet, we present 2 examples –

bread baking, and epidemiological models.

Keywords: Network modeling, Time-step simulation, Petri

Net, Ordinary Differential Equation, Python.

1. Introduction

Petri Nets are tools designed by C. A. Petri to model

concurrent systems, as graphical representations and

mathematical modeling tool for system of events [1-3].

The use of Petri Nets allows formal analysis of the model

or process that is being depicted [1-3]. Petri Nets are

populated by three types of objects – places, transitions

and arcs [1-3]. A place is an input position that is

connected to another transition via an arc. Place is usually

depicted by circles and transitions as bars [1-3].

Petri Nets are often used for software engineering [4],

system modeling [5] and even in biochemistry; such as

biochemical reactions [6], signal transduction networks [7]

and gene regulation networks [8]. An example of the use

of Petri Nets is by Liu and Heiner [9] where they

investigate biochemical reaction networks with the use of

unifying Petri Net framework to model and analyze such

networks [4]. This is because the properties of the

processes can be studied: Terminating, Reachability,

Safeness, Boundedness, Liveness, Reversibilty and Home

State, Coverability, Persistence and Fairness [1]. Such

properties can be studied [1] using Coverability tree

method, Reachability Graphs and Incidence Matrix and

State Equation.

There are libraries developed for modeling Petri Nets, such

as SimForge GUI [10] incorporated within OpenModelica,

and Petri Net Simulink Block (PNSB [11]) for MATLAB.

SNAKES had been developed by Pommereau [12] as a

library for implementing Petri Nets in Python

programming language. SNAKES [12] adopts a high-level

of object-oriented programming as tokens and all

transition rules are implemented as Python objects.

Although this provides flexibility, it may present as a

steeper learning curve. It may be considerably more

difficult to translate a text-based Petri Net specification

into a model in SNAKES. At the same time, SNAKES [12]

does not cater for complex transition rules that can only be

implemented as a function. However, a strong advantage

of SNAKES [12] is the incorporation of plugins, Petri Net

analysis tools, and the ability to convert implemented Petri

Nets into C language.

In this work, we present PNet an alternative pure Python

library for Petri Net modeling by reducing its object-

oriented programming overheads to its minimum, and

adding Python functions as an alternative type of transition

rule. Hence, PNet is likely to reduce the learning curve

needed for a beginner to start experiencing Petri Nets

before transitioning to more extensive library, such as

SNAKES [12]. PNet has been incorporated into COPADS

(https://github.com/mauriceling/copads), a library of

algorithms and data structures, developed entirely in

Python programming language and has no third-party

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

24

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

dependencies. Future work aims to implement a GUI for

improved usability and tools to analyze Petri Nets.

2. Description of PNet

In this section, we will describe PNet by using the steps

required to write a simulation. There are 5 steps to writing

a Petri Net simulation using PNet – establishing a Petri

Net, adding places or states, adding transition rules,

simulating the Petri Net, and generating the results file.

A Petri Net is established by importing PNet as a module

and instantiating the PNet class within the imported

module. This is followed by adding of places or states into

the Petri Net using add_places method, which takes 2

parameters – the name of the place and a dictionary

representing the initial tokens, where the dictionary key

and value is the name of the token and the number of

named tokens respectively. This allows for a place/state to

have more than 1 type of tokens. For example, a mixed

bowl of 100 red and green beans each can be stated as

net.add_places('bowl',

 {'red_beans': 100,

 'green_beans': 100})

However, there are situations whereby an infinite source or

sink is needed; for example, the number of people to be

born may be virtually infinite. In electronics, Earth is

considered an infinite source of positive and negative

charges. To cater for this need, a special place known as

ouroboros (ouroboros is the name for the “infinity”

symbol in mathematics) is defined with an infinite number

of “U” tokens.

The third step is the addition of transition rule(s), using

add_rules method. Each transition rules is named.

Transitions are channels where the tokens move from a

place to another, whereas the rules determine how the

move occurs. Generally, a transition rule consists of a

source place and destination place to direct the tokens,

source token type for identification purpose and

destination token type for getting a precise result. The

processes of transitions rules will then be checked against

the find value of tokens, using logical operators. The

logical operators of the checks are determined by

criterions, which are also known as the intended result

after the going through the transitions.

There are 5 types of rules: step, ratio, delay, incubate, and

function rules. The execution/firing of transition rules is

time-step dependent. Although in the strictest sense, each

rule should define only one transition; in practice, a single

rule can trigger 1 or more transitions as it is possible to

specify more than 1 transition in a rule. This can be seen as

a syntactic shorthand provided by PNet.

Step rule based on a step-wise execution where the rule

will be triggered at every time-step. The origin place and

the token at the origin place have to be indicated; at the

same time, the destination place and the affected token at

the destination place must be specified. This represents a

single transition. For example, given a bowl of red and

green beans each, the following step rule defines the

swapping of a bean at each time step,

net.add_rules('swap_bean, 'step',

 ['B1.red_bean -> B2.red_bean; 1',

 'B2.green_bean -> B1.green_bean; 1'])

Ratio rule is also a step-wise execution. Both step and ratio

rules have similar parameters, with the difference of using

the ratio of tokens to trigger the execution. The ratio that is

intended for the transition is indicated, which will be

check by a logical operator against the limit indicated.

This can be used to define increasing or decreasing

number of tokens moved. For example, given that there are

2 bowl (B1 and B2) where B1 contains all the red beans

and B2 is an empty bowl, moving 10% of the remaining

red beans in B1 to B2 can be defined as follow,

net.add_rules('swap_ratio', 'ratio',

 ['B1.red_beans -> B2.red_beans; 0.1; \

 B1.red_beans < 1; 0'])

Delay rule is a step rule with time interval between each

token movement. In effect, delay rule can be used to

produce a regular spiking movement. For example,

moving 10 beans from bowl B1 to B2 once every 5
th

 time

step, can be defined as

net.add_rules('interval_transfer’, 'delay',

 ['B1.beans -> B2.beans; 10; 5'])

Incubation rule can be seen as a “do nothing for a period

of time before a specific action”. It requires a value and a

timer, which has a logical check within to make sure that

the conditions are met before sending to the destination

place. For example, soaking a bowl of beans for 60 time

steps (such as 60 minutes) once water is added, and

transfer the soaked beans into a pot after soaking for 60

time steps, can be defined as

net.add_rules('soak', 'incubate',

 ['60; bowl.beans -> pot.beans; \

 bowl.water > 0'])

Function rule is a user-defined condition. Usually, function

rules are used when the previous 4 rules do not fit the

user’s requirement. However, all forms of transition rules

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

25

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

can be written as function rule; thus, function rule is the

superset. Another common application of function rule is

to change the type of tokens from one type to another. The

variations between the transition rules are the conditions

that trigger of the transition rules. The origin and

destination place together with the initial token and the

final token are required for the computation. For example,

the above ratio rule

net.add_rules('swap_ratio', 'ratio',

 ['B1.red_beans -> B2.red_beans; 0.1; \

 B1.red_beans < 1; 0'])

can be written as the following function rule,

def bean_swap(places):

 place = places['B1']

 n = place.attributes['red_beans']

if n > 0.0:

 return 0.0

else:

 return 0.1 * n

net.add_rules('swap_ratio', 'function',

 ['B1.red_beans -> B2.red_beans’,

 bean_swap, 'B1.red_beans > 0'])

Function(s) to be used in function rule(s) takes only one

parameter, places, which is the dictionary of

states/places in PNet. Each state/place can be accessed

using the name of the state/place as key to the places

dictionary. Tokens linked to a particular state/place are

implemented as an attributes dictionary and be

accessed using the name of token.

After rules definition, the fourth step is to simulate the

Petri Net using simulate or simulate_yield

method. The rules mentioned above will then be executed,

by setting the wall time of current simulation and the

interval. The wall time will be check against the rules to

ensure that it fulfills the time interval indicated.

The simulate method will stores the simulation results

in the memory space; thus, increased intervals of reporting

causes more reports to be generated, which causes memory

to run out at a faster rate. On the other hand,

simulate_yield method is a generator function,

which does not pre-store all the simulation results in

memory. The parameters of simulate method are length

of time to simulate, time step, and reporting frequency.

However, simulate_yield method only requires

length of time to simulate, and time step.

Finally, PNet provides a method to process the simulation

results into a format suitable for CSV file output. The

reports will be generated with each step count of current

simulation, in the memory of each token status. The status

of the tokens can be also report by generating a list

representing the status from one step or the entire

simulation.

Simulation and reporting are usually related to each other.

For example, the following code snippet demonstrates the

simulation and report generation using both simulate or

simulate_yield method:

length_of_simulation = 100

timestep = 1

report_frequency = 1

for simulate method

net.simulate(length_of_simulation,

 timestep, report_frequency)

status = net.report_tokens()

for simulate_yield method

status = [d for d in

 net.simulate_yield(length_of_simulation,

 timestep)]

status = [(d[0], net.report_tokens(d[1]))

 for d in status]

3. Examples

Two examples are presented to illustrate the use of PNet.

The first example is a light-hearted example of bread

baking while the second example is a more serious but

simple model of epidemiology.

Example 1: Bread Baking. In this example, a bread

baking recipe was modeled (see Appendix A for

implementation) and simulated for 90 time steps. It is

worth noting that this recipe utilized all features of PNet

except the use of infinite tokens from Ouroboros. This

recipe calls for 1000 g of flour, 500 g of water, 20 g of

sugar, and 1 g of yeast in the following steps:

1. Turn on the mixer and add 100 g of flour, 50 g of

water, and 2 g of sugar at each time step. Add 0.5 g of

yeast into mixer with 5 time step interval in between

each addition.

2. In each time step, the mixer will turn 80 g of flour, 40 g

of water, 1.5 g of sugar, and 1 g of yeast into dough.

3. After mixing is completed, leave dough to rise in mixer

for 10 time steps.

4. Transfer dough into pan, and leave dough to rise in pan

for another 10 time steps.

5. Bake at 400
o
C. In each time step, 30% of the remaining

dough will be baked into bread. Baking is completed

when there is less than 1 g of dough remaining.

6. Transfer the bread to the table for cooling. In each time

step, 10% of the heat will dissipate until room

temperature of 30
o
C is reached.

7. Enjoy your bread.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

26

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 1 Token Values in Bread Baking Simulation. Graph A shows the

mixing of ingredients into bread dough and the rising of the dough.
Graph B re-illustrate the rising of the dough and continue through the

baking and cooling process.

Steps 1 and 2 are the addition and mixing the ingredients

into bread dough. The rate of dough formation is slower

than the rate of ingredients addition; for example, 100 g of

flour and 50 g of water are added into the mixer per time

step but only 80 g of flour and 40 g of water are converted

to dough. This results in the accumulation of 20 g of flour

and 10 g of water in the mixer until all flour and water are

added (as seen in the mixing stage in Figure 1A); after

which, the accumulated flour in the mixer is converted into

bread dough. Once all ingredients are mixed into bread

dough, it undergoes 2 stages of rising (Steps 3 and 4).

After which, the dough is being baked at 400
o
C (Step 5).

The baking process is represented as transferal of 30% of

the dough tokens into bread tokens at each time step. Once

the bread is baked as represented by negligible remains of

dough (less than 1 g), the bread is transferred to a table and

cooled (Step 6). The cooling from 400
o
C to room

temperature of 30
o
C is represented by another function.

Example 2: Epidemiological Models. Epidemiological

Models are frameworks of ecological and epidemiological

phenomena that are often used to study interactions

between the host and the pathogen [13]. Epidemiological

models have proven useful for the study of evolutionary

dynamics of evolutionary dynamics and predicting

properties of the spread of pathogen like prevalence and

duration [13]. Alphabet models are frameworks of a

population whereby susceptible individuals are considered

to be invaded by an infectious agent [13]. The population

is divided into three epidemiological subclasses: S denotes

susceptible to diseases, I denotes number of infected

individuals and R denotes number of individuals who at

time no longer contribute to spread of diseases [13].

The Susceptible-Infectious-Susceptible (SIS) model is

predicated on the pathogen infects susceptible humans,

resulting in an infection and recovers from infection and

returns back to the susceptible class again [14]. Infectious

hosts recover at a constant per capita rate, γ and β is the

rate of infection of the susceptible class [14]. SIS model is

for fast evolving virus and infections that do not provide

immunity [14]. The Susceptible-Infectious-Recovered

(SIR) model is similar to SIS model except that the

pathogen leads to lifelong immunity [15]. The individuals

who were infected and recovered from infection are

immune to reinfection, possessing lifelong immunity [15].

This model is used for viral diseases such as measles,

mumps and rubella [14]. The Susceptible-Infectious-

Recovered-Susceptible (SIRS) model is similar to that of

SIR model, except that the immunity that are acquired is

temporary [16]. The individuals who were infected and

recovered from infection are not immune to reinfection

[14]. Example of such infection modeled by SIRS is

tuberculosis [16].

However, it is common for most epidemiological models

to be implemented as a system of ordinary differential

equations (ODEs) [17-20]. ODEs and Petri Net are two of

the most common mathematical constructs for

mathematical modeling [21]. Hence, a method to represent

an ODE in the form of Petri Net notation is needed and the

correspondence between ODE and state-transition network

is provided by Soliman and Heiner [22]. Briefly, an ODE

models the change of a state over time while Petri Net

models the movement which results in the change of state

over time (Figure 2). In the context of states (nodes) and

transitions (arcs), this suggests that ODEs models the

nodes while Petri Net models the transitions, which gives

rise to an easy conversion between ODE representations

and Petri Net representations, assuming that the unit for

time is the same under both representations.

Fig. 2 Correspondence between Ordinary Differential Equation and Petri
Net Transition Rule.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

27

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 3 SIS Epidemiological Model.

Fig. 4 SIR/SIRS Epidemiological Model.

Hence, the standard system of ODEs for SIRS [17, 18] can

be readily converted into Petri Net representations (Figures

3 and 4). The implementation of SIRS model using PNet is

given as Appendix B.

Fig. 5 Schematics of a Data Frame.

Our simulation results show that the proportion of infected

population and susceptible population reaches equilibrium

over time (Figure 5a). As there is also no immunity

conferred after recovery, it is expected to have a constant

infected population [23], also known as endemic

population. This is under the assumption that there are no

birth and death for the entire duration, and the disease is

not death causing. When there is immunity as a result of

recovery, SIS model becomes SIR model where the

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

28

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

population gradually becomes fully immune if there is no

additional birth (Figure 5b). This is similar to the case of

chickenpox [24], which confers lifelong immunity to most

recovered patients, leading to children being most

susceptible to chicken pox and most adults immune.

However, if the conferred immunity is temporary, re-

infection is possible and this leads to SIRS model from

SIR model (Figure 5b). Our results show that SIRS model

behaves in similar manner compared to SIS model where

there is a constant pool of infected (endemic) individuals

[25]. In spite of this, there is also a constant pool of

immune individuals whom had recently recovered from

the disease. This is expected when the infection agent can

re-infect a recovered person.

Acknowledgement
The authors wish to thank HJ Wang (Nanyang Technological

University) for valuable discussions during the developmental

and testing phases.

References
[1] W. Reisig, “Petri Nets: An Introduction”, Springer–Verlag,

1985.

[2] W. Reisig, “Understanding Petri Nets: Modeling Techniques,

Analysis Methods, Case Studies”, Springer–Verlag, 2013.

[3] T. Murata, "Petri Nets: Properties, Analysis and

Applications", Proceedings of the IEEE 77, 1989, 541-580.

[4] A. Bobbio, “System Modelling with Petri Nets”. Instituto

Elettrotecnico Nazionale Galileo Ferraris Strada Delle

Cacce 91, 10135 Torino, Italy, 1990, 14-15.

[5] S. Hardy and R. Iyengar, “Analysis of Dynamical Models of

Signaling Networks with Petri Nets and Dynamic Graphs”,

Modeling in Systems Biology 16, 2011, 225-251.

[6] D. Gilbert and M. Heiner M, “From Petri nets to differential

equations–an integrative approach for biochemical network

analysis”, Petri Nets and Other Models of Concurrency-

ICATPN 2006, 2006, 181-200.

[7] C. Chaouiya, “Petri Net Modelling of Biological Networks”,

Briefings in Bioinformatics 8, 2007, pp 210-219.

[8] H. Matsuno and A. Doi, “Hybrid Petri Net Representation of

Gene Regulatory Network”, Pacific Symposium on

Biocomputing 5, 2000, 338-349.

[9] F. Liu and M. Heiner, "Modeling Membrane Systems using

Colored Stochastic Petri Nets", Natural Computing 12, 2013,

617-629.

[10] S. Proß, B. Bachmann, R. Hofestädt, K. Niehaus, R.

Ueckerdt, F.-J. Vorhölter, P. Lutter, A. Stadtholz,

“Modeling a Bacterium's Life: A Petri-Net Library in

Modelica”, Conference Proceedings of Modelica 2009,

2009.

[11] M. Matcovschi, C. Popescu, and O. Pastravanu, A new

approach to hybrid system simulation: Development of a

simulink library for petri net models," Journal of Control

Engineering and Applied Informatics 7, 2005, 55-62.

[12] F. Pommereau, “SNAKES: A Flexible High-Level Petri

Nets Library (Tool Paper)”, Proceedings of the 36th

International Conference on Petri Nets (PETRI NETS 2015),

2015, 254-265.

[13] F. Brauer, “Compartmental Models in Epidemiology”, In

Lecture Notes in Mathematics 1945, 2008, 19-79.

[14] F. Brauer and C. Castillo-Chavez, “Basic Models in

Epidemiology”, In Ecological Time Series 1995, 410 – 447.

[15] M. J. Keeling and K. T.D. Eames, “Networks and epidemic

models”, Journal of the Royal Society Interface 2, 2005,

295-307.

[16] C. Ozcaglar, A. Shabbeer, S. L. Vandenberg, B. Yener, K.

P. Bennett, “Epidemiological models of Mycobacterium

Tuberculosis complex infections”, Mathematical

Biosciences 236, 2012, 77 – 96.

[17] P. Munz, I. Hudea, J. Imad and R. J. Smith, “When Zombies

Attack!: Mathematical Modelling of Outbreak of Zombie

Infection”, Infectious Disease Modelling Research Progress,

4, 2009, 133-150.

[18] M. Ling, “COPADS IV: Fixed Time-Step ODE Solvers for

a System of Equations Implemented as a Set of Python

Functions”, Advances in Computer Sciences 5, 2016, xx-

xxx.

[19] J.P. Aparicio and M. Pascual, “Building Epidemiological

Models from R(0): An Implicit Treatment of Transmission

in Networks”, Proceedings of the Royal Society B:

Biological Sciences 274, 2007, 505-512.

[20] L. Kong, J. Wang, W. Han and Z. Cao, “Modeling

Heterogeneity in Direct Infectious Disease Transmission in

a Compartmental Model”, International Journal of

Environmental Research and Public Health 13, 2016, 253.

[21] M. Ling, “Of (Biological) Models and Simulations”, MOJ

Proteomics & Bioinformatics 3, 2016, 00093.

[22] S. Soliman and M. Heiner M, “A Unique Transformation

from Ordinary Differential Equations to Reaction

Networks”, PLoS One 5, 2010, Article e14284.

[23] H.W. Hethcote and P. van den Driessche, “An SIS Epidemic

Model with Variable Population Size and a Delay”, Journal

of Mathematical Biology 34, 1995, 177-194.

[24] “Facts about chickenpox”, Paediatrics & Child Health 10,

2005, 413-414.

[25] Y. Chen, J. Yang and F. Zhang, “The Global Stability of an

SIRS Model with Infection Age”, Mathematical Biosciences

and Engineering 11, 2014, 449-469.

Appendix A: Code for Bread Baking

import pnet

net = pnet.PNet()

The ingredients

net.add_places('flour', {'flour': 1000})

net.add_places('water', {'water': 500})

net.add_places('sugar', {'sugar': 20})

net.add_places('yeast', {'yeast': 1})

The "utensils"

net.add_places('mixer', {'flour': 0,

 'water': 0, 'sugar': 0,

 'yeast': 0, 'dough': 0})

net.add_places('pan', {'dough': 0})

net.add_places('oven', {'dough': 0,

 'bread': 0})

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

29

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

net.add_places('table', {'bread': 0,

 'temperature': 400})

net.add_places('air', {'heat': 0})

The steps

net.add_rules('add_flour', 'step',

 ['flour.flour -> mixer.flour; 100'])

net.add_rules('add_water', 'step',

 ['water.water -> mixer.water; 50'])

net.add_rules('add_sugar', 'step',

 ['sugar.sugar -> mixer.sugar; 2'])

net.add_rules('add_yeast', 'delay',

 ['yeast.yeast -> mixer.yeast; 0.5; 5'])

net.add_rules('blend', 'step',

 ['mixer.flour -> mixer.dough; 80',

 'mixer.water -> mixer.dough; 40',

 'mixer.sugar -> mixer.dough; 1.5',

 'mixer.yeast -> mixer.dough; 1'])

net.add_rules('rise', 'incubate',

 ['10; mixer.dough -> pan.dough; \

 mixer.flour == 0; mixer.water == 0; \

 mixer.sugar == 0; mixer.yeast == 0'])

net.add_rules('set', 'incubate',

 ['10; pan.dough -> oven.dough; \

 pan.dough > 0'])

net.add_rules('bake', 'ratio',

 ['oven.dough -> oven.bread; 0.3; \

 oven.dough < 1; 0'])

net.add_rules('transfer', 'incubate',

 ['1; oven.bread -> table.bread; \

 oven.dough == 0'])

def cooling(places):

 place = places['table']

 temp = place.attributes['temperature']

 if temp <= 30.0: return 0.0

 else: return 0.1 * temp

net.add_rules('cool', 'function',

 ['table.temperature -> air.heat',

 cooling, 'table.bread > 0'])

Bake the bread !!!

net.simulate(90, 1, 1)

Generate results file

data = net.report_tokens()

headers = ['timestep'] + data[0][1]

f = open('bread.csv', 'w')

f.write(','.join(headers) + '\n')

for tdata in data:

 tdata = [tdata[0]] + \

 [str(x) for x in tdata[2]]

 f.write(','.join(tdata) + '\n')

f.close()

Appendix B: Code for SIRS Model

import pnet

infection = 0.01

recovery = 0.005

resusceptible = 0.01

net = pnet.PNet()

net.add_places('susceptible',

 {'susceptible': 100})

net.add_places('infected',

 {'infected': 0})

net.add_places('recovered',

 {'recovered': 0})

def susceptible_infected(places):

 place = places['susceptible']

 susceptible = \

 place.attributes['susceptible']

 return infection * susceptible

def infected_recovered(places):

 place = places['infected']

 infected = place.attributes['infected']

 return recovery * infected

def recovered_susceptible(places):

 place = places['recovered']

 recovered = \

 place.attributes['recovered']

 return resusceptible * recovered

net.add_rules('infection', 'function',

 ['susceptible.susceptible -> \

 infected.infected',

 susceptible_infected,

 'susceptible.susceptible > 0'])

net.add_rules('recovery', 'function',

 ['infected.infected -> \

 recovered.recovered',

 infected_recovered,

 'infected.infected > 0'])

net.add_rules('resusceptible', 'function',

 ['recovered.recovered -> \

 susceptible.susceptible',

 recovered_susceptible,

 'recovered.recovered > 0'])

net.simulate(500, 1, 1)

data = net.report_tokens()

headers = ['timestep'] + data[0][1]

f = open('sirs.csv', 'w')

f.write(','.join(headers) + '\n')

for tdata in data:

 tdata = [tdata[0]] + [str(x) for x in

tdata[2]]

 f.write(','.join(tdata) + '\n')

f.close()

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

30

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

