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Abstract  
The distribution information of data points in two classes as the 

structural information is inserted into the classifiers to improve 

their generalization performance. Recently many algorithms such 

as S-TWSVM has used this information to construct two non-

parallel hyperplanes which each one lies as close as possible to 

one class and being far away from the other. It is well known that 

different classes have different data distribution in real world 

problems, thus the covariance matrices of these classes are not 

the same. In these situations, the Mahalanobis is often more 

popular than Euclidean as a measure of distance. In this paper, in 

addition to apply the idea of S-TWSVM, the classical Euclidean 

distance is replaced by Mahalanobis distance which leads to 

simultaneously consider the covariance matrices of the two 

classes. By this modification, the orientation information in two 

classes can be better exploited than S-TWSVM. The experiments 

indicate our proposed algorithm is often superior to other 

learning algorithms in terms of generalization performance. 

 

Keywords: Structural information, Non-parallel hyperplanes, 

Non-parallel hyperplanes, Ward’s linkage, Twin support vector 

machine, Structural twin support vector machine. 

1. Introduction 

Recently, Support Vector Machines (SVMs) have been 

known as a popular algorithm in the fields of classification, 

regression, pattern recognition [2, 28-29]. Classical SVM 

assumes that two classes can be illustrated with a 

hyperspherical shape indicating samples in two classes 

follow the same distribution trend. However two classes 

have different distribution trends thus using a different 

hyperellipsoidal shape for each class can better 

demonstrate its data points. In this situation, Mahalanobis 

distance can better deal with hyperellipsoidal shapes [12, 

23-24]. As all we know Mahalanobis distance uses the 

covariance matrix of a class which this matrix indicates the 

distribution trend of data points in the corresponding class. 

The Euclidean distance which used in many classifiers is a 

special case of the Mahalanobis distance such that it 

assumes the covariance matrix of the corresponding class 

is an identity matrix indicates the distribution trend of data 

points in the corresponding class is the same in all 

directions. So due to the nature of hyperellipsoidal shapes 

which the distribution trend of a class is not the same in 

different directions, Mahalanobis distance can better 

perform than Euclidean distance in these situations. 

In literature, many efforts have been proposed to illustrate 

Mahalanobis distance in classifying the data points [1, 3, 4, 

14, 15, 22, 26].  On the other hand, in recent years, many 

structural information based classifiers, have also been 

proposed, such as structured large margin machine 

(SLMM) [5], ellipsoidal kernel machine (EKM) [21], 

mini-max probability machine (MPM) [8] and maxi-min 

margin machine (
4M ) [15] with the higher computational 

cost than the classical SVM. Recently a structural 

regularized SVM (SRSVM) [9], has proposed which 

captures the structural information, based on the cluster 

granularity. 

In [13, 35], an improvement on the speed of SVM has 

been proposed, called twin support vector machine 

(TWSVM). It finds two non-parallel hyperplanes instead 

of two parallel hyperplanes as in SVM. Each TWSVM’s 

hyperplane is obtained by solving two half size QPPs, 

instead of one large QPP as in the classical SVM. It can be 

seen in [4], not only the TWSVM’ learning speed is higher 

than that of SVM, but also its test accuracy is also 

improved. There are also some extensions on TWSVM, 

such as, the least squares version of TWSVM (LS-TSVM) 

[18, 19], smooth TWSVM [17], geometric algorithms [30], 

sparse TWSVM [31], twin support vector regressions 

(TSVRs) [33, 34]. 

On the other hand, TWSVMs suffer from lack of the 

structural information in its optimization problems. Hence, 

there have been several improvements on TWSVMs to add 
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this prior knowledge into its learning process. For instance, 

structural twin support vector machine (S-TWSVM) [36] 

has been proposed, which introduce the structural 

information derived by clustering methods into its 

optimization problems. Each S-TWSVM hyperplane 

exploit only one class structural information and lies 

closest to it and simultaneously getting far away from the 

other class. Another work is the twin Mahalanobis distance 

based support vector machine (TMSVM) [32]. This 

algorithm considers the covariance matrices of two classes 

and introduces them into Mahalanobis distances in its 

QPPs. Therefore TMSVM not only has faster leaning 

speed than classical SVM, but also instead of the 

covariance matrix of the total dataset, it simultaneously 

considers the covariance matrices of the two classes.  

In this paper, we propose an improvement on S-TWSVM 

which is called Mahalanobis distance-based S-TWSVM 

(MS-TWSVM) classifier. In MS-TWSVM, not only the 

data structures of the two classes, based on the cluster 

granularity [9] introduced into the optimization problems, 

but also our algorithm substitutes Mahalanobis distance 

for classical Euclidean distance under the corresponding 

cluster granularity. 

Therefore MS-TWSVM can efficiently inherit the merits 

of S-TWSVM and TMSVM. In comparison with S-

TWSVM, MS-TWSVM can better exploit the orientation 

information in the two classes, and contrary to other 

Mahalanobis distance-based methods, for all clusters in the 

two classes, it considers the sum of them respectively. 

Thus MS-TWSVM can effectively exploit the structural 

information in the two classes. 

Our proposed algorithm is evaluated with other learning 

algorithms on both synthetic (OR and XOR classification 

problems) and UCI benchmark datasets [7]. The results 

show that MS-TWSVM achieves higher generalization 

performance than other algorithms in almost all cases.  

This paper is organized as the following: section 2 

discussed a recent improvement on SVM, S-TWSVM. In 

next section, our proposed algorithm and its formulation 

are discussed. In section 5 experimental results on datasets 

are given and in last section conclusions are discussed. 

2. Background 

Suppose the training points for two classes are as follow 

 ( ) ( ) ( ) ( )

1 2[ , ,..., ], 1,2
i

i i i i

NX x x x i                                (1) 

where 
iN  is the samples with n dimension in class i, such 

as matrix A with 
1N n  samples (

iA as ith sample)  in 

class +1 and matrix B  with 
2N n  samples in class -1, 

where 
1 2N N N  .    

2.1 Structural twin support vector machine 

In the last decade, the structural information in data has 

been focused in classification algorithms and machine 

learning methods. Many extensions of SVM based on the 

structural information have been proposed [5, 8, 9, 15, 21, 

32, 36]. In these algorithms, the structural information is 

exploited by some clustering techniques and efficiency 

introduced to optimizing problem using covariance 

matrices of clusters and construct reasonable classifiers. 

In S-TWSVM, each hyperplane exploits the structure 

information in one class and lies closest to it and 

simultaneously being far from the other class. So S-

TWSVM can better use this prior information within 

samples leads to improve its generalization ability. Like 

other structure-based methods, S-TWSVM has two steps, 

clustering and model learning. In clustering step, the 

structure of data distribution in classes, is exploited by 

some clustering techniques [10, 11, 16, 27]. The clustering 

methods used in S-TWSVM is Ward’s linkage clustering 

(WIL) [10], the same as other structure-based methods. In 

model learning step, suppose the two S-TWSVM’s 

hyperplanes for two classes expressed as follow: 

1 1 1 2 2 2( ) 0 , ( ) 0 ,T Tf x w x b f x w x b                            (2) 

where
1 2 1, 2, ,nw w R b b R  . So two optimization 

problems of S-TWSVM must be solved  

1 1,

2 2 2

1 1 1 1 2 2 1 1 3 1 1 12 2,

1 2 1 2

1 1 1
min ( ) ,

2 2 2

. . ( ) , 0,

T T

w b
Aw e b c e c w b c w w

s t Bw e b e


      

         

 

(3) 

 

for the positive class (1) and 

2 2,

2 2 2

2 2 2 4 1 5 2 2 6 2 2 22 2,

2 1 2 1

1 1 1
min ( ) ,

2 2 2

. . ( ) , 0,

T T

w b
Bw e b c e c w b c w w

s t Aw e b e


      

     

 

 

(4) 

 

for the negative class (2), where 1 6,..., 0c c   are the pre-

specified penalty factors, 
i  and 

i are the slack 

variables, 
1 11 2... , ...

C CP N
P P N N          , 

iP denote the covariance matrix of ith and 
jN  for jth 

cluster in the two classes, respectively 

( 1,..., , 1,...,P Ni C j C  ).  

A new test point x  is classified according to its distance 

from the two hyperplanes (2), i.e., 

1 2
1,2

( ) arg min{ ( ), ( )},f x d x d x            

(5) 

where 

 
1 1 1 2 2 2( ) , ( )T Td x w x b d x w x b                               (6) 
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and .   is the perpendicular distance of point x  from the 

hyperplanes 
1 1

Tw x b or 
2 2

Tw x b  . 

For the nonlinear case, the two vectors 1w  and 2w could 

be expressed in Hilbert space ℋ as 
1 2

1 1 1 1( ) ( ) ( )
m m

i i iw x M 

      and 

1 2

2 1 2 2( ) ( ) ( )
m m

i i iw x M 

     , respectively, where 

1m and 
2m  are the size of data points in the positive and 

negative classes, respectively. So S-TWSVM computes 

the kernel-generated hyperplanes. 

3. Mahalanobis distance based structural twin 

support vector machine 

Now we express the details of the proposed algorithm 

which we call as Mahalanobis distance-based structural 

twin support vector machine (MS-TWSVM) classifier. 

Similar to S-TWSVM, our proposed algorithm is 

comprised of the clustering and model learning steps.  

 

3.1 Clustering 

In first step, the samples in each class are analyzed to find 

the points which have the same data distribution and are 

collected as one cluster. There are many clustering 

methods that can be used such as nearest neighbor 

clustering [27], k-means [11] and fuzzy clustering [16]. 

After clustering, the structural information through the 

covariance matrices of the clusters, introduced into the 

optimization problems. We use the Ward’s linkage 

clustering (WIL) [10] technique for clustering the samples 

which derive the compact and spherical clusters. 

 Suppose that A  and B  are two clusters, then Ward’s 

linkage ( , )W A B  between these two clusters can be 

calculated as  

 
2

. .
( , )

A BA B
W A B

A B

 
 


                                    (7) 

where A  and B  are the means of two clusters 

respectively. 

At the First of execution, it assumes one sample as a 

distinct cluster. Now suppose 1x  and 2x  are two examples, 

the Ward’s linkage between 1x  and 2x  is  

2

1 2

1 2( , )
2

x x
W x x


                                                     (8) 

when 1x  and 2x  are being merged to construct A , 

Ward’s linkage between Aand C  is calculated as  

( ) ( , ) ( ) ( , ) ( , )
( , ) .

A C W A C B C W B C C W A B
W A C

A B C

   
  

 

      (9) 

As can be seen from above, while the clusters are being 

merged, the ward’s linkage between them increases and 

the cluster amounts decreases [5]. In order to find the 

optimal number of clusters, we should determine the knee 

point in the curve with the merge distance in vertical axis 

and the number of clusters in horizontal and as the knee 

point is found, the clustering process should be stopped 

[25]. 

3.2 Linear MS-TWSVM 

We express the positive and negative clusters as 

1 1{ ,..., ,..., }, { ,..., ,..., }.
P Ni C j CP P P P N N N N    Positive samples 

are represented as 1I d
A R


 and 2I d

B R


  shows all 

samples that exists in the negative class (
1 2I I l  ).  

MS-TWSVM expresses two non-parallel hyperplanes:  
1 1( ) 0 ( ) 0T Tf x w x b f x w x b 

                                 (10) 

where 
,, ,dw w R b b R     . 

 By employing the Mahalanobis distance instead of 

Euclidean distance, the following two optimization 

problems are obtained: 

,
1 2

1 2 2

1 2 3
,

1

2

1 1 1
min ( ) ( ) ,

2 2 2

. . ( ) , 0,

j

T T T T

i j
w b

i I j I

T

j j j

w x e b c e c w w b c w w

s t w x e b e j I

 



          


 



    

        

          

 
(11) 

,
2 1

1 2 2

4 5 6
,

1

1

1 1 1
min ( ) ( ) ,

2 2 2

. . ( ) , 0,

i

T T T T

j i
w b

j I i I

T

i i i

w x e b c e c w w b c w w

s t w x e b e i I

 



          


 



    

        

         

 
      (12) 

where 
1 2 6, , ...,c c c     are the pre-specified penalty 

factors, 
j  and 

i  are the slack variables, 

1 1
... , ...

C CP N
P P N N           , 

iP  and 
jN  

are the covariance matrices corresponding to i
th

 and j
th

 

clusters in the two classes, respectively 

( 1,..., , 1,...,P Ni C j C  ). 

In the equations (11) and (12), similar to S-TWSVM, by 

adding terms Tw w   , the compactness of the 

corresponding classes will be kept. In addition in 

optimization problem (11) and (12), we use Mahalanobis 

distances instead of Euclidean distance. As we know, in 

many real-world classification problems, Mahalanobis 

distance can better operate than Euclidean distance, so 

with this substitution, the corresponding covariance 

matrices of the two classes (usually have different data 

structures), are simultaneously considered in MS-TWSVM. 

This improvement can take full advantage of the structural 

information in two classes of data.  
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We calculate the Lagrangian functions for (11) and (12) 

and use the Karush-Kuhn-Tucker (KKT) conditions for 

(11) and (12), so the QP problems for them are shown as 

follow:  

1

2 3

1

1
   e ( )

2

. .  0 e  

T T T TMax G H H c I c J G

s t c








    

   

             (13) 

where 

1 1[ ] , [ ],H A e G B e 

          
0

0 0
J

 
  
 

 
 

       (14) 

and 

1

5 6

4

1
   e ( )

2

. .  0 e  

T T T TMax P Q Q c I c F P

s t c


  









  

  

               (15) 

where 

1 1[ ] , [ ],P A e Q B e 

          
0

0 0
F

 
  
 

 
 

        (16) 

After optimizing these two dual QP problems, the vectors 

[ ]T T Tv w b    and [ ]Tv w b     are computed by 

following formulas: 
1

2 3( ) ( )T Tv H H c I c J G

                                  (17) 

and 
1

5 6( ) ( )T Tv Q Q c I c F P 

                                  (18) 

where we denote I as an identity matrix with appropriate 

dimensions. As seen in matrix theory [6], 

2 3

TH H c I c J  and 
5 6

TQ Q c I c F  are positive definite 

matrices. 

After obtaining the vectors v and v  from (17) and (18), 

the hyperplanes 
1 10 0T Tw x b w x b 

                                    (19) 

are known. Similar to S-TWSVM, a new test point 
nx R  gets its class label according to which 

hyperplanes lie closest to it, i.e., 

,

( ) arg min{ ( ), ( )},f x d x d x 
 

                                      (20) 

where 

 

1

1
( )

T

T

w x b
d x

w w



  




  

 
 


 and 

1

1
( )

T

T

w x b
d x

w w



  




  

 
 



       (21) 

3.3 Nonlinear MS-TWSVM 

We extend linear MS-TWSVM to nonlinear version. For 

this purpose the kernel trick is introduced to the optimizing 

problems causing the samples separable more linearly. So 

the two primal QPPs of nonlinear MS-TWSVM are as 

follow: 

,
1 2

1 2 2

1 2 3
,

1

2

1 1 1
min ( ( ) ) ( ) ,

2 2 2

. . ( ( ) ) , 0,

j

T T T T

i j
w b

i I j I

T

j j j

w x e b c e c w w b c w w

s t w x e b e j I





 



          


 



    

        

          

 
(22) 

,
2 1

1 2 2

4 5 6
,

1

1

1 1 1
min ( ( ) ) ( ) ,

2 2 2

. . ( ( ) ) , 0,

i

T T T T

j i
w b

j I i I

T

i i i

w x e b c e c w w b c w w

s t w x e b e i I





 



          


 



    

        

         

 
  (23) 

where 
1

...
cp

P P      , 
1

...
cN

N N     , 

iP and 
jN are the kernel covariance matrices for the i

th
 

and j
th

 clusters in the two positive and negative classes, 

respectively ( 1,..., , 1,...,P Ni C j C  ). These covariance 

matrices are computed as ( ) ( )
i i i i i

T T

P P P P PA J J A   and 

( ) ( )
j j j j j

T T

N N N N NB J J B   . So the covariance matrix 

 of the positive class can be obtained as follow: 

1

1 1 1

1

1

... ( ) ( )

( )

. . .
[ ( ) .... ( )]

. . .

( )

( ) ( )

P

c i i i iP

cP

c c cP P P

c
T T

P P P P P P

i

T
P P P

P P

T
P P P

T T

A J J A

J J A

A A

J J A

A J J A

 



 



 





 

      

    
    
    

         
    
         



  (24) 

where 

1

1

.
( ) [ ( )... ( )] and .

.cP

cP

P

P P

P

J

A A A J

J

   

 
 
 

   
 
 
  

                   (25) 

Similarly for the negative class, the covariance matrix 

 is computed as 

( ) ( )T TB J J B                                                          (26)  

where 

1

1

.
( ) [ ( )... ( )] and .

.cN

cN

N

N N

N

J

B B B J

J

   

 
 
 

   
 
 
  

              (27) 

As we know, the terms 
1

  are usually ill-conditioned. So 

by adding a small positive number  , the terms 
1 1 

    could be positive definite matrices. 

Consider the Woodbury matrix identity [20], 
1 1 1 1 1( ) ( )T T T TU VV U U V I V U V V U        , we set 

U I   and ( )V A J  , so we have 

1 1

1 1 1

) [ ( ) ( ) ]

( ) ( ) ( )

T T

T T T

A

A J J A

A J J K J J A

 

 

 

  

  

   

     

    
   (28)  
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where ( ) ( ) ( , )T

AK A A k A A   . Similarly we obtain 

1 1

1 1 1

) [ ( ) ( ) ]

( ) ( ) ( )

T T

T T T

B

B J J B

B J J K J J B

 

 

 

  

  

   

     

    
 (29) 

where ( ) ( ) ( , )T

BK B B k B B   . Thus, the Mahalanobis 

distance-based kernels in the feature space H , can be 

computed by these two covariance matrices, as follow: 
1

1 1 1

1 1 1

( , ) ( ). ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( ) ] ( )

( , ) ( , ) ( ) ( , ).

T

i j i j i j

T T T T

i A j

T T

i j i A j

K x x x x x I x

x I A J I J K J J A x

K x x K x A J I J K J J K A x

   

   



 

  

   

  

   

   

    

    

   (30) 

 

1

1 1 1

1 1 1

( , ) ( ), ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( ) ] ( )

( , ) ( , ) ( ) ( , ).

T

i j i j i j

T T T T

i B j

T T

i j i B j

K x x x x x I x

x I B J I J K J J B x

K x x K x B J I J K J J K B x

   

   



 

  

   

  

   

   

    

    

   (31) 

Now we obtain the following MS-TWSVM hyperplanes 

(32) by employing the above kernels: 

( , ) 0Tw K C x b     and ( , ) 0Tw K C x b                (32) 

Where Mahalanobis distance-based kernels (. , .)K   and 

(. , .)K    can be computed by (30) and (31). So 

Mahalanobis distance-based QPPs are as follow: 

1 2

2

1

2

2 3

2

1
min ( ( , ) )

2

1 1
( ) ,

2 2

. . ( ( , ) ) , 0 ,

T T

i j

i I j I

T T

T

j j j

w K C x e b c e

c w w b c w w

s t w K C x e b e j I

    

 

     

    

    

  

          

 

 (33) 

2 1

2

4

2

5 6

1

1
min ( ( , ) )

2

1 1
( ) ,

2 2

. . ( ( , ) ) , 0 ,

T T

j i

j I i I

T T

T

i i i

w K C x e b c e

c w w b c w w

s t w K C x e b e i I

    

 

     

    

    

  

         

 

          (34) 

By some simple computing, the Wolfe Duals of (33) and 

(34) can be shown as: 

 
1

2 3

1

1
max ( )

2

. . 0

T T T Te R SS c I c Z R

s t c e

      

   

                        (35) 

1

5 6

4

1
max ( )

2

. . 0

T T T Te M NN c I c Y M

s t c e

  



   

  

                            (36) 

where   and  are the Lagrangian vectors and 

[ ( , ) ] , [ ( , ) ]T TS K A C e R K B C e                       (37) 

[ ( , ) ] , [ ( , ) ]T TM K A C e N K B C e                       (38) 

By solving the problems (35) and (36), the vectors u  and 

v  are obtained as follows: 
1

2 3( )Tu SS c I c Z R                       (39) 

1

5 6( )Tv NN c I c Y M                                          (40) 

Where 

0

0 0
Z

 
  
 

 and 
0

0 0
Y

 
  
 

                                 (41) 

( ) ( ) ( , ) ( , )T T TA J J A k C A J J k A C                 (42) 

( ) ( ) ( , ) ( , )T T TB J J B k C B J J k B C                   (43) 

4. Experiments 

To compare the performance of MS-TWSVM, S-TWSVM, 

TMSVM and TSVM, we execute these algorithms on UCI 

benchmark datasets [7]. To evaluate the classification 

accuracy of MS-TWSVM in comparison to other 

algorithms, several benchmark datasets in the UCI 

database are used. In the feature space, we use the 

Gaussian kernel to compare the algorithms. In all 

experiments, for simplicity we 

set
1 4 2 5 3 6, ,c c c c c c       and use ten-fold cross 

validation procedure to measure the testing accuracy. All 

parameters 
1 2 3, ,c c c      and   in the Gaussian kernel, are 

selected by ten-fold cross validation from {2 7,...,7}i i    

on 10% of training samples. Samples are normalized in the 

range [-1 1]. All methods are implemented on PC with 2.4 

GHz Intel core i7 and 4 GB of memory. 

4.1 UCI datasets 

Now we illustrate the result of executions for four 

algorithms MS-TWSVM, S-TWSVM, TMSVM and 

TMSVM on UCI datasets [12]. The dimensions and sizes 

of training and testing data for each dataset are shown in 

Table [3]. Model’s parameters selection is performed by 

the method of ten-fold cross validation on 10% of the 

training set. 

The test accuracies and CPU training times are shown in 

the Table [1]. The following results are given from Table 

[1]; first MS-TWSVM’s test accuracies on almost all 

datasets, is higher than other three algorithms. This is 

because MS-TWSVM’s optimization problems conclude 

the corresponding data structures of two classes, and by 

substituting Mahalanobis distance for Euclidean distance, 

it can better capture the orientation information in each 

class and causes further improvement on the generalization 

performance. Second the CPU training time of MS-

TWSVM is higher than the others. This is a reasonable 

result because MS-TWSVM needs to perform clustering 

phase to exploit the data structures, and also needs to 

manipulate matrix inversions. As seen in Table [1], The 

CPU training time of TMSVM is less than S-TWSVM’s. 

This more training time is spent on the clustering step in 

S-TWSVM which TMSVM doesn’t have it. However, 

these two algorithms are comparable to TSVM in terms of 
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classification accuracy for almost all datasets. On the other 

hand, TSVM is the fastest algorithm among these 

algorithms which it doesn’t have the clustering step to 

exploit the structural information and the distance measure 

is used in TSVM is Euclidean distance which requires less 

computation efforts than Mahalanobis distance. The 

classification accuracy of TSVM, since it doesn’t need to 

exploit the orientation information or the data structures in 

two classes, is less than the others.  

 

 

Table 1: The result of nonlinear MS-TWSVM and S-TWSVM on 

benchmark datasets. 

Datasets 

MS-TWSVM 

Acc. 

Exe. (s) 

S-TWSVM 

Acc. 

Exe. (s) 

TSVM 

Acc. 

Exe. (s) 

TMSVM 

Acc. 

Exe. (s) 

Banana 
71.89±0.1125 

7.88 

 

64.34±0.1525 

4.94 

62.92±0.1500 

1.40 

69.20±0.126 

2.81 

Breast 

Cancer 
73.90±0.051 

0.98 

73.64±0.0465 

0.80 

72.47±0.036 

0.29 

73.64±0.037 

0.43 

Diabetes 
75.33±0.064 

6.99 

 

74.34±0.1208 

3.80 

72.23±0.049 

1.97 

71.00±0.059 

2.53 

Flare 
65.75±0.042 

18.31 

 

64.25±0.0510 

4.94 

61.76±0.052 

2.34 

62.26±0.054 

10.98 

German 
71.73±0.033 

9.93 

 

71.30±0.0341 

5.03 

70.40±0.021 

3.57 

71.13±0.025 

4.64 

Heart 
79.60±0.059 

0.6339 

 

78.10±0.0963 

0.5843 

77.50±0.081 

0.1237 

75.20±0.085 

0.2639 

Image 
82.34±0.040 

22.81 

 

71.00±0.0507 

17.61 

70.77±0.037 

13.12 

80.61±0.0608 

15.95 

Ringnorm 
67.72±0.073 

2.75 

 

66.55±0.1139 

2.03 

60.55±0.123 

1.80 

61.69±0.110 

2.67 

Splice 
84.63±0.094 

11.62 

 

78.00±0.0103 

10.79 

73.98±0.130

2 

5.67 

83.45±0.007 

7.45 

Thyroid 
69.33±0.109 

0.8098 

67.20±0.1638 

0.5224 

64.27±0.035 

0.1162 

69.33±0.1461 

0.1658 

Titanic 
78.45±0.057 

0.4807 

 

77.77±0.0828 

0.4619 

77.52±0.067 

0. 0876 

77.60±0.078 

0.1070 

 

5. Conclusions 

We proposed an extension of the structural twin support 

vector machine called MS-TWSVM algorithm. The idea 

behind the proposed algorithm is to improve capturing the 

orientation information in two classes of data, by 

substituting Mahalanobis distance for Euclidian distance in 

S-TWSVM. As all we know, for many real-world 

problems, Mahalanobis distance can be comparable to 

Euclidean distance and leading MS-TWSVM to 

simultaneously consider the corresponding covariance 

matrices of the two classes. So MS-TWSVM can 

efficiently capture the orientation information of the two 

classes. As mentioned earlier, our proposed method aims 

to sum the covariance matrices all clusters in two classes 

respectively which leads to the structural information of 

two classes be different. As seen in the experiments, MS-

TWSVM can better exploit the structural information of 

two classes and improve the classification accuracy. One 

of the future works is to experiment our proposed method 

on the large scale problems. On the other hand our method 

exploits the structural information based on the cluster 

granularity. So using the point granularity instead of the 

cluster granularity is a new topic. 
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