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Abstract 
The multimode resource-constrained project scheduling problem 

(MRCPSP) is an extension of the single-mode resource-

constrained project scheduling problem (RCPSP). In this 

problem, each project contains a number of activities which 

precedence relationship exist between them besides their amount 

of resource requirements to renewable and non-renewable 

resources are limited to the resources availabilities. Moreover, 

each activity has several execution modes, that each of them has 

its amount of resource requirements and execution duration. The 

MRCPSP is NP-hard, in addition, proved that if at least 2 non-

renewable resources existed, finding a feasible solution for it is 

NP-complete. This paper introduces two greedy mode selection 

methods to assign execution modes of the primary schedules’ 

activities in order to balance their resource requirements and thus 

reduce the number of infeasible solutions in the initialization 

phase of a bi-population genetic algorithm for the problem. To 

investigate the usage effect of these greedy methods on the 

quality of the final results, in addition, to evaluating the 

performance of the proposed algorithm versus the other meta-

heuristics, the instances of the PSPLIB standard library have 

been solved. The computational results show that by the growth 

of the problem size, the proposed algorithm reports better results 

in comparison with the other metaheuristics in the problem 

literature. 

Keywords: Resource-constrained project scheduling, Multi-

mode, Genetic algorithm, Makespan, Initialization 

1. Introduction 

Resource-constrained project scheduling problem (RCPSP) 

is the generalized version of multi-mode resource 

constrained project scheduling problem (MRCPSP). In the 

RCPSP, all activities have only one execution mode, in 

contrast, each activity in MRCPSP can have several 

execution modes, which each of them determines the 

performing duration plus resource requirements of that 

activity. 

An objective function for these class of problems can be 

the minimization of projects makespan respect to 

precedence relations between activities, in addition to 

renewable and non-renewable resource availability 

constraints. [1] show that, if at least two non-renewable 

resources in the MRCPSP existed, finding a feasible 

solution for it is NP-complete. [2] proved that in projects 

with at least 20 activities and 3 execution modes for each 

of them, the exact algorithms, like B&B or B&C, cannot 

find an optimum solution in acceptable time. Therefore, in 

the recent years, researchers have extended their research 

in the MRCPSP to heuristics and meta-heuristics area. 

However, these type of algorithms may not able to obtain 

global optimum solutions, but their speed of convergence 

are higher that exact algorithms, hence they could be 

proper replacements in big or medium size problems. In 

the last decades, so many heuristic and meta-heuristic 

algorithms have been proposed, and some of them are 

introduced in the follows.  

[2] proposed a branch and bound algorithm for the 

MRCPSP, which was limited to time. [3] tested 21 

heuristic scheduling rules and suggested a combination of 

5 heuristics that have a higher probability of giving the 

best solution, also in 1996 he introduced a heuristic 

algorithm based on the critical path method. [1] suggested 

a local search algorithm that first tried to find a feasible 

solution and next performed a single neighborhood search 

on the set of feasible mode assignments. [4] presented a 

two-phase optimization algorithm that in the first phase an 

ACO algorithm tried to found a set of feasible mode-

assignment candidates, and then in the second phase, an 

SA algorithm attempted to found a schedule from these 

mode-assignment candidates. [5] introduced a hybrid 

method based on PSO algorithm to assign modes to 

activities and local search optimization to optimize 

sequences associated to assignments during the evolution 

of the algorithm. [6] proposed a scatter search algorithm 

for assignment of different modes to the activities and to 

optimize the sequence associated with each assignment. [7] 

developed a hybrid GA to solve the problem. Their 

algorithm used a mode assignment procedure to maximize 

the probability of obtaining feasible solutions in the initial 

population, also it used a fitness function to keep 
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infeasible solution in its population, and finally by 

utilizing an improving method attempted to reduce the 

project makespan. [8] proposed a two-phase genetic local 

search algorithm that combines a genetic algorithm and a 

local search method for solving the problem. A set of elite 

solutions is collected during the first phase, and this set, 

which acts as the indication of promising areas, is utilized 

to construct the initial population of the second phase. [9] 

applied a hybrid rank based evolutionary algorithm to 

solve the problem. They extend the search space and 

simplify the evolutionary operators by relaxing non-

renewable resource constraints. Furthermore, they 

introduced a fitness function relying on clustering 

techniques to promote diversity and avoid premature 

convergence of the algorithms. [10] proposed a bi-

population genetic algorithm, which used of two separate 

populations and extends the serial schedule generation 

scheme by introducing a mode improvement procedure 

that improved the mode selection by choosing that feasible 

mode of a certain activity that minimizes the finish time of 

that activity. [11] proposed a scatter search algorithm, 

which is executed with three different improvement 

methods, each tailored to the specific characteristics of 

different renewable and non-renewable resource 

scarceness values. [12] presented an ALNS-based 

algorithm for the MRCPSP. He proposed techniques for 

deriving additional precedence relations and a method for 

removing modes during execution. These techniques used 

of bound arguments, also he introduced three bounds for 

the MRCPSP. [13] developed a shuffled frog-leaping 

algorithm for solving the problem. They applied priority 

rules to initialize the population, next they used a two-

point crossover and exchanging information during 

shuffling and partitioning process to evolve the population, 

and finally they utilized a local search to enhance the 

exploitation. [14] by combining GA and SA solved the 

problem. In their algorithm, SA was employed as local 

search procedure, due to its stochastic neighborhood 

selection strategy to escape local optima hence a good 

exploitation strategy, and GA as exploration strategy due 

to its large number of population. [15] introduced a 

cooperative discrete particle swarm optimization algorithm 

for solving the problem. They suggested that, because the 

positions of particles are discrete values, so they can be 

updated with crossover and mutation operators. Each 

particle learns from its past experience and the global 

experience to balance exploration and exploitation. 

Moreover, two swarms are separately applied to optimize 

the two sub-problems: mode assignment problem and 

activity sequencing problem. Eventually, a merging 

method used to convert these sub-problems into an 

integrated problem. [16] applied ACO to solve the 

problem. In their algorithm, two levels of pheromones 

were considered with regard to the solution in terms of 

sequence and mode selection of the activities. Moreover, 

elitist-rank strategy and non-renewable resource-constraint 

are incorporated into the updating procedure of the 

pheromones. [17] presented a hybrid local search 

technique with EDA to enhance the local search ability. 

Their local search was based on delete-then-insert operator 

and a random walk (DIRW) to enhance exploitation 

abilities of EDA in the neighborhoods of the search space. 

[18] used a heuristic RCPSP solver and a SAT solver and 

relies on network transformations that extend the project 

network and transforms the OR, which specified that only 

one of the predecessors must be finished before an activity 

can start, and BI, which specified that two activities cannot 

be scheduled in parallel, constraints into traditional AND 

constraints. Thus, the project can be solved by any 

stochastic project scheduling algorithm without using 

these logical constraints directly. Their algorithm 

guaranteed the original precedence logic and is embedded 

in a meta-heuristic search to resource feasible schedules 

that respect both the limited renewable resource 

availability as well as the precedence logic. 

 

 

Fig. 1. an instance of an AON graph with a representation of forward 

schedule besides its backward schedule and their Gantt chart [1]. 

This paper introduces a Genetic Algorithm with two 

Greedy mode selection methods (GAG) to solve the 

MRCPSP. In contrast to regular GA, the purposed 

algorithm is based on the bi-population approach, as 

presented by [19] for the RCPSP. Furthermore, in order to 

balance the amount of resource requirements of each 

schedule’ activities and thus reduce the number of 
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infeasible solutions in the initial population, two greedy 

mode selection methods have been employed to assign 

execution modes to the initial schedules’ activities. 

Moreover, due to evaluate the generated schedules and 

give improvement chances to the infeasible solutions, the 

penalty function of [5] has been used. The reminder of the 

paper is organized as follows: Section 2 describes the 

general formulation of the problem after that section 3 

describes different steps of the algorithm in details. 

Section 4 shows the effects of different parts of the 

algorithm on its performance, and finally, the obtained 

results compared with other meta-heuristics.  

2. Problem formulation 

The MRCPSP formulated as follows: A set of activities 

             that has to schedule preemptively 

based on availability of renewable resources     
     |   |  and non-renewable resources     

     |   |  besides their precedence relations. Each 

renewable resource        has a constant value of 

availability   
 

 in different time periods, while each non-

renewable resource       is limited to a fixed value of 

  
  in total project running period. Each activity      

performs in execution mode      with      

       |  | . Moreover, the execution mode    for 

activity   represents by a triple            
 

        
  , which 

includes predefined values of      as performing duration, 

      
 

 units of resource      , and       
  units of resource 

      as the amount of needs of the activity to 

renewable and non-renewable resources respectively.  In 

set N, 0 and n+1 indices indicate start and end dummy 

activities of the project, in addition have only one 

execution mode and their execution duration besides 

amount of needs to renewable and non-renewable 

resources are equal to zero units. Suppose that, G (N,  ) is 

an acyclic graph, then the network of a project can be 

shown as an AON topological order, so that the time log of 

all activities are equal to zero, and P is the set of pairs of 

activities which shows a finish-start precedence 

relationship between them. If schedule S defines by a 

vector of activities, then it will be feasible, only if respects 

to all precedence relations of activities and resource 

limitation of the project. In this paper, the objective 

function is finding a feasible solution that minimizes the 

project makespan. [20] introduced the following linear 

programming to solve the MRCPSP: 

 

 

 

The binary variable      is equal to one, when activity j in 

mode m starts at time  , otherwise it is equal to zero.  

3. Genetic algorithm for the MRCPSP 

[21] introduced genetic algorithm (GA), which inspired by 

evolutionary biology, to solve complicated optimization 

problems. GA uses natural selection, crossover, and 

mutation operators to generate individuals of the next 

generations of the population.  

 

 

Fig. 2. a conceptual view of the performing steps of the proposed 

algorithm. 

In contrast to the regular genetic algorithm, GAG is based 

on the bi-population approach, as proposed by [19] for 
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RCPSP, which one of them contains forward schedules 

(POPf) and the other one includes backward schedules 

(POPb). After generating initial population randomly, two 

greedy mode selection methods perform to balance the 

amount of resource requirements of activities of each 

schedule and thus reduce the number of infeasible 

schedules, in this way the primary population of POPf will 

be generated. Next, the population individuals will be 

evaluated, and the genetic operators will be performed on 

them. After that, the POPf population by using forward-

backward procedure will be converted to POPb and the 

genetic operators will be performed on its individuals too. 

This procedure will be continued until the termination 

condition meets. Fig. 2, represents a conceptual view of 

the performing steps of the algorithm.  

3.1. Solution representation 

Four vectors with equal size used to represent solutions, so 

that the first vector contains a sequence of activities 

(Index), and the seconds to third vectors are execution 

mode (Mode), start time (ST) and finish time (FT) of each 

activity respectively. Fig. 1b illustrates this four vector 

representation and Fig. 1c shows a feasible solution 

instance for the network of Fig. 1a. 

3.2. Forward-backward procedure 

Forward serial schedule generation scheme (S-SGS) 

proposed by [22], and it works as follows: it starts at the 

beginning of the priority list of activities, and schedule 

them at the earliest possible time with respect to the 

limitation of the resource existences and their precedence 

relations. Furthermore, in order to generate a backward 

schedule, sort activities descending based on their finish 

time, then schedule them with respect to their reverse 

precedence relations. After that, to obtain a forward 

schedule from its backward schedule, first sort activities 

ascending, then if a gap between start times of the project 

from zero existed, the start time and finish time of 

activities are shifted to the left. The alternative conversion 

of forward schedules to their backward schedules and vice 

versa called the forward-backward procedure and was 

proposed by [23] as a local search for RCPSP. For 

example, Fig. 1d and Fig. 1e draw Gantt charts of a 

forward schedule and its backward schedule for the 

network of Fig. 1a. 

3.3. Preprocessing 

[24] introduced a reduction procedure for reducing search 

space of the problem, so that in each activity excludes 

those modes which are inefficient, amount of their 

resource usage plus execution duration are higher than the 

other modes, or non-executable, violate the resource 

constraints. Moreover, this procedure removes redundant 

non-renewable resources, which the sum of the maximal 

request for them does not exceed their availabilities. 

3.4. Initial population 

GAG uses two different populations: population POPf 

which contains only forward schedules and population 

POPb that includes only backward schedules. Both 

populations have the same number of POP solutions. First, 

the algorithm generates the schedules of POPf randomly, 

next one of the greedy mode selection methods selects by 

chance and performs on them in order to balance the 

resource requirements of activities in each schedule and 

thus reduce the number of primary infeasible solutions. 
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Algorithm 1: Greedy mode selection procedure number 1 which by 

selection proper modes for activities balances the amount of usage of 
non-renewable resources. 
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Algorithm 2: Greedy mode selection procedure number 2 which by 

selection proper modes for activities balances the amount of usage of 
non-renewable resources 
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3.5. Greedy mode selection methods 

After generating the initial population randomly, the 

greedy mode selection methods by selecting a proper 

execution mode for each activity try to balance the amount 

of usage of the resources with respect to their availabilities, 

so that the number of infeasible schedules in the primary 

population will be decreased. Algorithm 1 and Algorithm 

2 are the pseudo code of this greedy execution mode 

selection methods. In fact, both methods attempt to select 

an execution mode for each activity that does not lead to 

use non-renewable resources exceedingly and amount of 

usage of all non-renewable resources become closed to 

each other. (See section 2) 

 

Fig. 3. performing genetic operators on two selected parents, i and j, and 
generating a new schedule 

3.6. Details of the genetic algorithm  

In this section, the details of the bi- population genetic 

algorithm will be discussed. 

3.6.1. Evaluation 

An infeasible solution is a schedule which violates 

precedence relations between activities or resource 

availability constraints. Because of using serial SGS in 

GAG, generating an infeasible solution which violates 

precedence relations between activities or uses renewable 

resources more than their availability in different time 

periods is impossible. Therefore, the definition of an 

infeasible solution changes here to a solution which uses 

non-renewable resources exceedingly. In an initial 

population of GAG maybe too many infeasible solutions 

generated, while performing the algorithm they convert to 

high-quality feasible ones. In consequence, GAG needs a 

mechanism to keep infeasible solutions in its population, 

in addition, evaluate their quality, moreover use them to 

generate and improve the next generations. The penalty 

function of [5] has been used in the algorithm due to 

implement mentioned mechanism so that a constant 

value   adds to makespan of the schedule per each unit of 

illegal usage of non-renewable resources. Suppose that, 

     is the finish time of the last activity in the i-th 

schedule in the population, and CP is the value of the 

critical path method of the project, then the value of the 

objective function [5] will be calculated by equation (7).  
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Obviously, the lower fitness value for a schedule means 

that schedule is more valuable, furthermore the value of 

function (7) never become lower than the value of the 

critical path method, which is a lower bound for each 

project. (See section 2) 

3.6.2.  Parent Selection 

Parent selection is one of the main operators of the genetic 

algorithm. GAG uses roulette wheel selection to select two 

parents i and j from the current population, POPf or POPb. 

In this type of selection, schedules with a lower value of 

the objective function, more valuable schedules, have a 

higher probability to select.  

3.6.3. Crossover operator 

Genetic crossover operator performs on two selected 

parents, i and j, in one-point fashion and generates a child 

which inherit the attributes of its parents. In the one-point 

crossover, an integer number “Crosspoint” selected 

randomly in an interval between 1 and length of activities’ 

vector (index), next all left side data of Crosspoint copy 

from parent j and the remaining data from parent i copy to 

the child. 

= 
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3.6.4.  Mutation  

Genetic mutation operator applies to create tiny tweaks in 

the attributes of different individuals of the population. 

GAG uses two types of mutation operators: exchange 

activity mutation which tries to exchange the place of two 

random activities without violating their precedence 

constraints, in addition, change execution mode mutation 

which attempts to change execution mode of a random 

activity to another legal one. Both of these operators 

perform by Pmut probability.  Fig. 3 illustrates an example 

of performing these genetic operators. 

3.6.5. Update 

After performing the genetic crossover operator, the 

promising test on the generated child applies, so that if the 

test result was true, then activities of the generated child 

sort based on their precedence constraints and the mutation 

operators by Pmut probability perform on them, finally 

calculate the start time and finish time of the activities. 

Otherwise, if the test result was false, the generated child 

omits without submitting to the SGS. Equation (8) and (9) 

calculate the total non-renewable resource usage (TNN) 

and total work contents of a schedule (TWC) respectively. 

Furthermore, HC in equation (10) is the promising 

condition, and its value will be true, if the value of TNN, 

which is the total request for non-renewable resource, or 

the value of TWC, which is an estimation of the project 

makespan, of the generated child, are not more that their 

values for its parents. In fact, if the amount of needs to 

non-renewable resources become higher, the probability of 

being infeasible increases while the amount of needs to 

renewable resources and the execution time duration of 

activities become higher, the gap between project 

makespan and its value of the critical path method 

increases. (See section 2) 
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Fig. 3 shows an example of performing genetic operators 

for the network of Fig. 1a. Obviously, two unequal 

chromosomes (schedule), i and j, are selected by roulette 

wheel selection, next by applying crossover operator on 

them, a new child generated, after that because the value 

of HC was valid, the mutation operators by Pmut 

probability perform on it, finally the parent with equal or 

higher value of objective function, means less valuable 

schedule, than the generated child replaced by it. If the 

value of the objective function of the parents were equal to 

each other, one of them replaces by the child randomly. 

Therefore, the size of the population is always fixed. 

4. Computational experiments 

We code and run our algorithm in C#.net 2010 on Lenovo 

G510 with an Intel core i5 2.5 GHz processor and use the 

standard MRCPSP test dataset J10, J12, J14, J16, J18, J20 

and J30 of the well-known PSPLIB. The PSPLIB are 

generated by the problem generator ProGen designed by 

[25]. The optimal solutions for J10–20 sets, that have at 

most 20 activities, are available, however no optimal 

solutions for J30 set have been found. Each dataset 

contains 640 instances, some of which are infeasible. 

Table 1 shows the number of instances in each set that at 

least have one feasible solution, Fs column, besides the 

number of activities, Acts row, in each set.  

Instances of this dataset have 10 to 30 activities, moreover, 

each activity has 3 execution modes, which each of them 

determines execution duration and amount of resource 

requests of that activity. Furthermore, 2 renewable and 2 

non-renewable resources exist for each project, in addition, 

execution duration of each activity varies between 1 and 

10. Suppose that, S is the number of instances in each set 

that at least have one feasible solution (i.e. S = 547, in J10), 

         and       are the value of the objective function 

(7) and the best result value for i-th instance, respectively, 

so that, the formula (11) calculates the value of  the 

average percentage of deviation from best known results. 

 

(11)         
 

 
∑

              
     

 

   

       

4.1. The training set 

A training set contains 700 random instances, which 100 

random instances selected from each J10-J30 sets, has 

been used to investigate the effect of different parts of the 

algorithm on its final performance, besides due to reduce 

the impact of chance element on the obtained results, each 

instances of the training set 10 times sent to the algorithm 

and the average of these 7000 values from formula (11), 

whose       is equal to the value of the critical path 

method of the project (lower bound) for the i-th instance, 

has been reported as the value of F(x). In all of the 

experiments that have been done on this training set, the 

termination condition was equal to 500 generated 

schedules and TCPU(ms) denotes as the average CPU time in 
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millisecond that the algorithm reached to the termination 

condition.  

Table 1: the number of feasible instances in each set (Fs) besides the 
number of activities in each set 

J30 J20 J18 J16 J14 J12 J10  

552 554 552 550 551 547 536 Fs 

30 20 18 16 14 12 10 Acts 

Table 2: the impact of the greedy mode selection methods-on the trainig 

set-(500 generated schedules) 

G1+G2 G2 G1 RND  Sch 

143 150 1271 2576 Inf 
0 

160.35 160.85 220.90 376.30 F(x) 

0 8 18 446 Inf 

500 26.31 26.72 27.01 143.56 F(x) 

89.90 85.25 83.02 868.66 TCPU(ms) 

Table 3: the impact of the effect of the mutation and crossover operators-

on the trainig set-(500 generated schedules) 

C+                    C  

26.31 27.32 27.54 83.45 48.93 F(x) 

89.90 79.75 76.39 43.07 48.45 TCPU(ms) 

Table 4: the best value of Pmut- on the training set- (500 generated 
schedules) 

0.9 0.7 0.5 0.3 0.1 Pmut 

26.31 28.04 29.54 31.81 36.36 F(x) 

89.90 63.70 56.64 53.37 45.53 TCPU(ms) 

4.2. The impact of the mode selection methods 

Suppose that, Sch is the number of generated schedules by 

the algorithm, Inf is the number of infeasible instances 

which the algorithm couldn’t even find a feasible solution 

for them after reaching to the termination condition. Table 

2 shows the effect of using greedy mode selection methods 

on the performance of the algorithm. (See section 4.1) 

Obviously, in the initial population, when Sch is equal to 

zero, without using the greedy methods and generating the 

population randomly (RND), the algorithm for more than 

third of the instances started its search process from an 

infeasible point, and even after reaching to the termination 

condition, when Sch is equal to 500, reported 446 still 

infeasible schedules. The great gap between initial 

schedules and feasible solutions for the problem has been 

inherited by the next generations, and thus they omitted 

just as they created, because of applying the promising 

condition (10), so didn’t submitted to the SGS and caused 

the increasing the algorithm execution time (TCPU(ms)). In 

contrast, the number of infeasible solutions by using the 

first greedy procedure (G1) reduced to 18, and by applying 

the second greedy procedure (G2) reduced to 8, finally by 

performing both of them (G1+G2) randomly with 0.5 

probability reduced to zero, because the algorithm started 

its search process from feasible or near feasible points and 

thus the next generations, which produced by the 

combination of good features of their parents, have higher 

quality and their deletion ration by the promising condition 

(10) has been decreased, thus the algorithm terminated 

faster than RND. As it is obvious in the F(x) rows, by 

reducing the number of infeasible schedules, the quality of 

the final results improved and the best results obtained by 

using the combination of both of the greedy mode 

selection methods. 

4.3. The impact of the genetic operators 

Table 3 shows the effect of using crossover and mutation 

operators on the performance of the algorithm.  Suppose 

that, C shows the only usage of the crossover operator in 

the genetic algorithm, moreover    and    mean the only 

usage of the exchange activities mutation operator and the 

only applying the change execution mode mutation 

operator on the chosen parent with lower value of the 

objective function (more valuable), respectively. (See 

section 4.1) 

Table 3 shows that the worst case obtained by using   , 

because the precedence relation between activities 

constraints limit their exchange extremely, so the place of 

an activity can’t change with the other one easily. In the 

other side tiny tweaks in execution mode of activities can 

lead to big changes in amount of usage of resources or 

project makespan, therefore the usage of    had the most 

effect among applying single operators. Furthermore, 

using C reported better results than   , because it tried to 

produce a higher quality child than its two parents by 

combining their attributes. In fact, the GA by applying 

only mutations, in single operators or the combinatorial 

one (     ), degrades to a local search, so stick into a 

local minimum, also by using only crossover operator acts 

like a random search. Ultimately by observing (    
    ) column, which demonstrates the using of all three 

proposed operators, concludes that the best results 

obtained by balancing the exploration and exploitation. 

Notice that except the last column (       ), which 

the promising condition (10) performed after execution of 

the crossover operator and before execution of the 

mutation operators, in the other columns the promising 

condition performed just after execution of the single or 

combinatorial operators. 

The computational results in table 4 show that the best 

value for Pmut, the probability of performing mutation 

operators, is equal to 0.9. The high value of Pmut means 

the frequent usage of the mutation operators which leads to 

increase computational time besides exploitation in the 

algorithm. In contrast to the other genetic algorithm in the 

literature, like MHGA [7], TGLS [8], PVGA [10] and 

CGA [14], in GAG did not used any local search 

procedure to tweak execution modes of activities during 

running the GA in order to improve the quality of the 

individuals, therefore to have more exploitation we 
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increased the probability of performing of the genetic 

mutation operators. Finally, the comparison of TCPU(ms) and 

F(x) rows in both tables 3 and table 4 shows that the 

results quality level have a direct influence on the deletion 

rate of the promising condition (10) thus the algorithm 

execution time. In the other word, when the quality of 

feasible solutions raise, the competition between parents 

and their children for survival increase too, and thus the 

average computational time of the algorithm will be higher. 

4.4. Determination of the population size 

The large population size voids its homogeneity, also 

increases the computational time, and in the case of time 

limitation generates only a few schedules, consequently 

restricts the performance of the GA too. In the other hand, 

small population size prevents the evolutionary 

performance of the algorithm. Therefore, we need to 

determine the population size relative to the size of the 

problem. When configuring the algorithm, we have found 

out that the number of activities of each project besides the 

population size have a direct influence on the performance 

of the algorithm. Moreover, we have noticed the number 

of activities in each project is negatively related to the 

population size, if the number of activities in project 

increases, the performance of the algorithm will increase 

by decreasing the population size. Similar results were 

found in [19], [26], [27] and [10]. A nonlinear least 

squares regression based on the best population size values 

for the different number of activities by the formula (14) 

can be calculated, in which POP is the population size and 

N is the number of activities. The both population, POPf 

and POPb, have the same number of individuals POP, so 

the total population size in the algorithm is equal to   
   .  

 

 

(12)     ⌊
       

    
 

 
⌋ 

4.5. Comparison with other meta-heuristics 

In the literature of the MRCPSP, the maximum number of 

generated schedules and the maximum CPU time 

consumed are mostly used as the stopping conditions for 

comparison. According to the literature, we used the 

following three kinds of stopping conditions: (1) 5000 

generated schedules; (2) 1 s CPU time; (3) 0.15 s CPU 

time per activity. We run the GAG 10 times independently 

for each instance. The statistical results are reported in 

Tables 5, 6 and 7, respectively. Moreover in the following 

tables        ,                           columns 

denote variance, maximum, minimum and average 

percentage of instances which optimum solutions have 

been found in each set respectively, besides 

                                 columns mean 

variance, maximum, minimum and average percentage of 

deviation of the algorithm’ results from the best results, 

which is optimum values for J10 to J20 sets and the 

critical path method values as lower bound of projects for 

J30 set, that are calculated by the formula (11) respectively, 

also Fs ,TCPU(S) and Set columns denote the number of 

instances in each set that at least have one feasible solution, 

the average CPU time in seconds that the algorithm 

reached to the termination condition, and the sets of the 

PSPLIB standard library, respectively. In the mentioned 

tables, the FS column illustrates that all obtained results 

were feasible, moreover the values of         column, 

that are the variances for all the problem sets, are very 

small, which shows that the GAG is very stable. In 

addition, the values of the TCPU(S) column demonstrates 

that the average computational time of the algorithm 

increases as the problem size increases too.  

Next, we compare the GAG with some existing algorithms 

based on the PSPLIB to further show the effectiveness of 

the GAG. The compared algorithms include the hybrid 

algorithm of ACO and SA [4] denoted as TAS, the 

combinatorial PSO algorithm [5] denoted as CPSO, the 

scatter search algorithm [6] denoted as PSS, the hybrid GA 

[7] denoted as MHGA, the a two-phase genetic local 

search algorithm [8] denoted as TGLS, the hybrid rank 

based evolutionary algorithm [9] denoted as RBEA, the 

genetic algorithm [10] denoted as PVGA, the scatter 

search algorithm [11] denoted as PVSS, the ALNS-based 

algorithm [12] denoted as ALNS, the shuffled frog-leaping 

algorithm [13] denoted as SFLA, the hybrid algorithm of 

GA and SA [14] denoted as CGA, the cooperative discrete 

particle swarm optimization algorithm [15] denoted as 

CDPS, the ACO [16] denoted as ACO, and the hybrid 

local search technique with EDA [17] denoted as SEDA. 

Table 8, 9 and 10 compare the obtained results of GAG 

with other algorithms based on 5000 generated schedules, 

1 seconds, and 0.15 second per each activity as termination 

conditions. Furthermore, the one-tailed t-test is adopted to 

explain whether the GAG is significantly better than the 

compared metaheuristics. We denote         of our 

algorithm as   and         of the compared algorithm, 

which has the closest value to the GAG, as   . Suppose 

the null hypothesis (   ) is equal to  μ    , and the 

alternative hypothesis (  ) is μ    . The   statistic can be 

calculated as follows: 

 

 

(13) 

 

  
μ    

(
 

√ 
)

 

 

That   is the number of independent running tries of the 

GAG, and   √         is the value of standard 

deviation of samples which calculated based on the 
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        in tables 5 through 7. According to the obtained 

value of formula (13), we can find the equivalent   
      from the corresponding lookup table of the        

that is the probability to make a mistake if     accepted as 

true. All the         of the applying        on results 

of GAG and         of the compared algorithm, which 

has the closest value to it, are listed in the last rows of 

tables 8 through 10.  

Each schedule assigns a start time to each activity of the 

project by SGS. The number of generated schedules 

calculates based on the number of times which each 

activity of the project gets a feasible start time divides by 

the number of the project activities [28]. In contrast to the 

other genetic algorithm in the literature, like MHGA [7], 

TGLS [8], PVGA [10] and CGA [14], in GAG did not 

used any local search procedure to tweak execution modes 

of activities during running the GA in order to improve the 

quality of the individuals, so that after performing 

crossover operator and assurance of promising the new 

child by condition (10), mutation operators used. 

Moreover, in order to have more exploitation in the 

algorithm, we increased the probability of performing of 

the genetic mutation operators. In addition, if the quality of 

the generated child become lower than its parents (   
     ), it will be removed immediately without sending to 

the SGS. Obviously in the table 8, which compared the 

algorithms by the 5000 generated schedules as termination 

condition, the results of GAG are extremely similar to the 

scatter search algorithm of [11] and their results gap 

increased by the growth of the problem size, finally GAG 

represented better performance, while the GAG started its 

search process from feasible or near feasible points by 

performing greedy mode selection methods, and thus it 

ignore a huge search space in initialization time, moreover 

by pruning its non-promising children with condition (10) 

during search process tries to avoid deviation of 

improvement path besides prevent going to the ineffective 

search areas. Similar results obtained in table 9 and 10, 

based on the reported values of the         in each 

column, so that by increasing the number of activities in 

the problem not only the average percentage of deviation 

from the best known results in our algorithm are lower 

significantly than the other metaheuristics but also the 

average percentage number of problems that solved 

optimally are greater significantly than the others. 

Obviously in the table 10, because of the termination 

condition, 150 milliseconds per each activity, which 

provided more opportunity to execution for the algorithm, 

in all data sets except J12 the GAG had better performance.   

According to the above comparisons between the GAG 

and the other metaheuristics, it can be concluded that our 

proposed GAG is effective in solving the MRCPSP.

Table 5: GAG results-on the PSPLIB datasets-(5000 generated schedules) 

                            Fs TCPU(S)                                 Set 

7.31E-7 100 99.81 99.94 100 0.025 1.47E-5 0.009 0.000 0.002 J10 

2.14E-6 99.45 98.90 99.20 100 0.064 6.98E-5 0.053 0.028 0.037 J12 

4.48E-5 98.36 95.82 97.46 100 0.140 6.19E-4 0.155 0.065 0.094 J14 

2.64E-5 97.09 95.27 96.18 100 0.208 5.49E-4 0.192 0.111 0.149 J16 

3.95E-5 95.28 93.11 94.11 100 0.303 7.61E-4 0.260 0.169 0.218 J18 

9.11E-5 93.32 90.61 92.09 100 0.577 1.05E-3 0.328 0.238 0.277 J20 

n/a n/a n/a n/a 100 1.512 1.31E-3 13.507  13.374  13.421 J30 

Table 6: GAG results-on the PSPLIB datasets-(1 second) 

                            Fs TCPU(S)                                 Set 

2.23E-6 100 99.62 99.88 100 1 4.96E-5 0.019 0.000 0.005 J10 

8.32E-6 99.26 98.35 98.92 100 1 2.76E-4 0.080 0.025 0.048 J12 

3.36E-5 97.27 95.09 95.95 100 1 4.47E-4 0.175 0.107 0.152 J14 

4.18E-5 94.72 92.90 94.07 100 1 6.60E-4 0.276 0.197 0.225 J16 

1.24E-4 90.94 88.04 89.47 100 1 1.45E-3 0.473 0.362 0.414 J18 

9.07E-5 87.00 83.93 85.09 100 1 1.27E-3 0.625 0.504 0.584 J20 

n/a n/a n/a n/a 100 1 4.05E-3 14.969  14.739  14.826  J30 

Table 7: GAG results-on the PSPLIB datasets-(0.15 s CPU time per activity) 

                            Fs TCPU(S)                                 Set 

0.00E-0 100 100 100 100 1.8 0.00E-0 0.000 0.000 0.000 J10 

4.31E-6 99.63 98.90 99.25 100 2.1 1.10E-4 0.048 0.014 0.034 J12 

3.99E-6 98.00 97.27 97.77 100 2.4 5.13E-5 0.096 0.072 0.082 J14 

2.74E-5 97.81 95.81 97.25 100 2.7 4.39E-4 0.156 0.079 0.100 J16 

6.51E-5 96.37 93.65 95.18 100 3.0 7.67E-4 0.220 0.129 0.172 J18 

4.84E-5 93.68 91.15 92.53 100 3.3 8.54E-4 0.328 0.219 0.266 J20 

n/a n/a n/a n/a 100 4.8 2.16E-3 13.345  13.171 13.262  J30 
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Note: The optimal values of J30 are not available. 

Table 8: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results – 
(5000 generated schedules as termination condition) 

         (%)        (%) 

 J10 J12 J14 J16 J18 J20 J30 J10 J12 J14 J16 J18 J20 

TAS 0.16 0.21 0.97 1.40 1.40 1.98 - 96.01 93.89 82.19 84.18 81.42 76.20 

CPSO 0.03 0.09 0.36 0.44 0.89 1.10 - 99.25 98.47 91.11 85.91 79.89 74.19 

PSS 0.05 0.11 0.38 0.52 0.84 1.03 - 99.07 98.35 93.66 87.66 83.33 79.24 

MHGA 0.08 0.27 0.31 0.50 0.69 0.98 - 99.01 96.53 92.92 90.00 84.96 80.32 

TGLS 0.33 0.52 0.93 1.08 1.32 1.69 18.33 95.16 90.57 82.03 77.39 73.38 66.66 

RBEA 0.14 0.24 0.77 0.91 1.30 1.62 - 97.31 94.94 83.18 77.27 70.78 63.16 

PVGA 0.01 0.09 0.22 0.32 0.42 0.57 13.75 99.63 98.17 94.56 92.00 88.95 85.74 

PVSS 0.00 0.02 0.08 0.15 0.23 0.32 13.66 100 99.45 97.28 96.73 94.75 87.73 

ALNS 0.05 0.20 0.55 0.78 1.14 1.52 15.96 99.01 95.59 88.75 84.76 78.75 72.87 

SFLA 0.10 0.21 0.46 0.58 0.94 1.40 13.46 97.92 95.97 90.86 86.49 79.43 72.84 

CGA 0.16 0.31 0.63 0.49 0.52 1.04 - 97.39 93.95 83.48 82.36 74.23  68.91 

CDPS 0.05 0.21 0.46 0.82 1.21 1.62 - 98.99 95.94 90.41 82.61 75.49 70.92 

ACO 0.09 0.13 0.40 0.57 1.02 1.10 - 98.30 96.50 90.30 86.90 76.10 72.40 

SEDA 0.09 0.12 0.36 0.42 0.85 1.09 - 97.62 97.11 92.31 91.05 82.46 77.57 

GAG 0.00 0.03 0.09 0.14  0.21 0.27 13.42  99.94 99.20 97.46 96.18 94.11 92.09 

P-value 0.964 0.999 0.946 0.463 0.116 0.001 0.000 0.965 0.999 0.209 0.995 0.994 0.000 
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold. 

Table 9: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results – 

(1 second CPU time as termination condition) 

         (%)        (%) 

 J10 J12 J14 J16 J18 J20 J10 J12 J14 J16 J18 J20 

RBEAa 0.09 0.13 0.43 0.46 0.67 0.91 98.6 97.3 90.00 88.90 84.10 78.52 

SFLAb 0.03 0.03 0.13 0.21 0.46 0.91 99.22 99.12 96.64 94.44 88.46 80.42 

GAGc 0.005 0.04 0.15 0.22 0.41 0.58 99.88 98.92 95.95 94.07 89.47 85.09 

P-value 0.000 0.996 0.995 0.953 0.002 0.000 0.000 0.991 0.997 0.947 0.009 0.000 
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold. 

a
 Pentium 3.00 GHz 

b T7500 2.2 GHz 
c Intel 2.5 GHz 

Table 10: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results 
– (0.15 second per activity CPU time as termination condition) 

         (%)        (%) 

 J10 J12 J14 J16 J18 J20 J10 J12 J14 J16 J18 J20 

RBEA 0.03 0.05 0.26 0.25 0.45 0.58 99.25 98.72 93.93 93.09 88.22 84.81 

SFLA 0.03 0.02 0.08 0.13 0.28 0.57 99.37 99.48 97.99 96.73 92.50 86.55 

GAG 0.000 0.03 0.08 0.10 0.17 0.26 100 99.25 97.77 97.25 95.18 92.53 

P-value 0.000 0.999 0.434 0.000 0.000 0.000 0.000 0.996 0.996 0.005 0.000 0.000 
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold. 

5. Conclusion 

The multimode resource-constrained project scheduling 

problem (MRCPSP) is an extension of the single-mode 

resource-constrained project scheduling problem (RCPSP). 

In this problem, each project contains a number of 

activities which precedence relationship exist between 

them besides their amount of resource requirements to 

renewable and non-renewable resources are limited to the 

resources availabilities. Moreover, it is proved that in 

projects that contain at least 20 activities and 3 execution 

modes per each activity, exact algorithms, like B&B and 

B&C, cannot find an optimum solution in acceptable 

execution time. The MRCPSP is NP-hard, in addition, 

proved that if at least 2 non-renewable resources existed, 

finding a feasible solution for it is NP-complete. In this 

paper, we have introduced two greedy mode selection 

methods to assign execution mode to the initial schedules’ 

activities. By the aim of these greedy methods can 

generate feasible or near feasible schedules, thus, can use 
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them in the initialization phase of population-based 

algorithms. In order to show the efficiency of these greedy 

methods, we have implemented them in the initialization 

phase of a bi-population genetic algorithm to solve the 

MRCPSP. In addition, our GA used an effective penalty 

function to preserve infeasible schedules in the population 

and give improvement chance to them, also by pruning 

non-promising children, which generated during 

performing the algorithm, tried to reduce search space. 

The computational results show the well performance of 

the proposed algorithm by increasing the number of 

activities in the projects in comparison with the other 

meta-heuristics in the literature. 
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