

A bi-population genetic algorithm with two novel greedy mode

selection methods for MRCPSP

Siamak Farshidi 1, Koorush Ziarati 2

1 University Department, Utrecht University, Utrecht

Utrecht, Netherlands

s.farshidi@uu.nl

2 University Department, Shiraz University, Shiraz

Shiraz, Iran

ziarati@shirazu.ac.ir

Abstract
The multimode resource-constrained project scheduling problem

(MRCPSP) is an extension of the single-mode resource-

constrained project scheduling problem (RCPSP). In this

problem, each project contains a number of activities which

precedence relationship exist between them besides their amount

of resource requirements to renewable and non-renewable

resources are limited to the resources availabilities. Moreover,

each activity has several execution modes, that each of them has

its amount of resource requirements and execution duration. The

MRCPSP is NP-hard, in addition, proved that if at least 2 non-

renewable resources existed, finding a feasible solution for it is

NP-complete. This paper introduces two greedy mode selection

methods to assign execution modes of the primary schedules’

activities in order to balance their resource requirements and thus

reduce the number of infeasible solutions in the initialization

phase of a bi-population genetic algorithm for the problem. To

investigate the usage effect of these greedy methods on the

quality of the final results, in addition, to evaluating the

performance of the proposed algorithm versus the other meta-

heuristics, the instances of the PSPLIB standard library have

been solved. The computational results show that by the growth

of the problem size, the proposed algorithm reports better results

in comparison with the other metaheuristics in the problem

literature.

Keywords: Resource-constrained project scheduling, Multi-

mode, Genetic algorithm, Makespan, Initialization

1. Introduction

Resource-constrained project scheduling problem (RCPSP)

is the generalized version of multi-mode resource

constrained project scheduling problem (MRCPSP). In the

RCPSP, all activities have only one execution mode, in

contrast, each activity in MRCPSP can have several

execution modes, which each of them determines the

performing duration plus resource requirements of that

activity.

An objective function for these class of problems can be

the minimization of projects makespan respect to

precedence relations between activities, in addition to

renewable and non-renewable resource availability

constraints. [1] show that, if at least two non-renewable

resources in the MRCPSP existed, finding a feasible

solution for it is NP-complete. [2] proved that in projects

with at least 20 activities and 3 execution modes for each

of them, the exact algorithms, like B&B or B&C, cannot

find an optimum solution in acceptable time. Therefore, in

the recent years, researchers have extended their research

in the MRCPSP to heuristics and meta-heuristics area.

However, these type of algorithms may not able to obtain

global optimum solutions, but their speed of convergence

are higher that exact algorithms, hence they could be

proper replacements in big or medium size problems. In

the last decades, so many heuristic and meta-heuristic

algorithms have been proposed, and some of them are

introduced in the follows.

[2] proposed a branch and bound algorithm for the

MRCPSP, which was limited to time. [3] tested 21

heuristic scheduling rules and suggested a combination of

5 heuristics that have a higher probability of giving the

best solution, also in 1996 he introduced a heuristic

algorithm based on the critical path method. [1] suggested

a local search algorithm that first tried to find a feasible

solution and next performed a single neighborhood search

on the set of feasible mode assignments. [4] presented a

two-phase optimization algorithm that in the first phase an

ACO algorithm tried to found a set of feasible mode-

assignment candidates, and then in the second phase, an

SA algorithm attempted to found a schedule from these

mode-assignment candidates. [5] introduced a hybrid

method based on PSO algorithm to assign modes to

activities and local search optimization to optimize

sequences associated to assignments during the evolution

of the algorithm. [6] proposed a scatter search algorithm

for assignment of different modes to the activities and to

optimize the sequence associated with each assignment. [7]

developed a hybrid GA to solve the problem. Their

algorithm used a mode assignment procedure to maximize

the probability of obtaining feasible solutions in the initial

population, also it used a fitness function to keep

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

66

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

infeasible solution in its population, and finally by

utilizing an improving method attempted to reduce the

project makespan. [8] proposed a two-phase genetic local

search algorithm that combines a genetic algorithm and a

local search method for solving the problem. A set of elite

solutions is collected during the first phase, and this set,

which acts as the indication of promising areas, is utilized

to construct the initial population of the second phase. [9]

applied a hybrid rank based evolutionary algorithm to

solve the problem. They extend the search space and

simplify the evolutionary operators by relaxing non-

renewable resource constraints. Furthermore, they

introduced a fitness function relying on clustering

techniques to promote diversity and avoid premature

convergence of the algorithms. [10] proposed a bi-

population genetic algorithm, which used of two separate

populations and extends the serial schedule generation

scheme by introducing a mode improvement procedure

that improved the mode selection by choosing that feasible

mode of a certain activity that minimizes the finish time of

that activity. [11] proposed a scatter search algorithm,

which is executed with three different improvement

methods, each tailored to the specific characteristics of

different renewable and non-renewable resource

scarceness values. [12] presented an ALNS-based

algorithm for the MRCPSP. He proposed techniques for

deriving additional precedence relations and a method for

removing modes during execution. These techniques used

of bound arguments, also he introduced three bounds for

the MRCPSP. [13] developed a shuffled frog-leaping

algorithm for solving the problem. They applied priority

rules to initialize the population, next they used a two-

point crossover and exchanging information during

shuffling and partitioning process to evolve the population,

and finally they utilized a local search to enhance the

exploitation. [14] by combining GA and SA solved the

problem. In their algorithm, SA was employed as local

search procedure, due to its stochastic neighborhood

selection strategy to escape local optima hence a good

exploitation strategy, and GA as exploration strategy due

to its large number of population. [15] introduced a

cooperative discrete particle swarm optimization algorithm

for solving the problem. They suggested that, because the

positions of particles are discrete values, so they can be

updated with crossover and mutation operators. Each

particle learns from its past experience and the global

experience to balance exploration and exploitation.

Moreover, two swarms are separately applied to optimize

the two sub-problems: mode assignment problem and

activity sequencing problem. Eventually, a merging

method used to convert these sub-problems into an

integrated problem. [16] applied ACO to solve the

problem. In their algorithm, two levels of pheromones

were considered with regard to the solution in terms of

sequence and mode selection of the activities. Moreover,

elitist-rank strategy and non-renewable resource-constraint

are incorporated into the updating procedure of the

pheromones. [17] presented a hybrid local search

technique with EDA to enhance the local search ability.

Their local search was based on delete-then-insert operator

and a random walk (DIRW) to enhance exploitation

abilities of EDA in the neighborhoods of the search space.

[18] used a heuristic RCPSP solver and a SAT solver and

relies on network transformations that extend the project

network and transforms the OR, which specified that only

one of the predecessors must be finished before an activity

can start, and BI, which specified that two activities cannot

be scheduled in parallel, constraints into traditional AND

constraints. Thus, the project can be solved by any

stochastic project scheduling algorithm without using

these logical constraints directly. Their algorithm

guaranteed the original precedence logic and is embedded

in a meta-heuristic search to resource feasible schedules

that respect both the limited renewable resource

availability as well as the precedence logic.

Fig. 1. an instance of an AON graph with a representation of forward

schedule besides its backward schedule and their Gantt chart [1].

This paper introduces a Genetic Algorithm with two

Greedy mode selection methods (GAG) to solve the

MRCPSP. In contrast to regular GA, the purposed

algorithm is based on the bi-population approach, as

presented by [19] for the RCPSP. Furthermore, in order to

balance the amount of resource requirements of each

schedule’ activities and thus reduce the number of

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

67

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

infeasible solutions in the initial population, two greedy

mode selection methods have been employed to assign

execution modes to the initial schedules’ activities.

Moreover, due to evaluate the generated schedules and

give improvement chances to the infeasible solutions, the

penalty function of [5] has been used. The reminder of the

paper is organized as follows: Section 2 describes the

general formulation of the problem after that section 3

describes different steps of the algorithm in details.

Section 4 shows the effects of different parts of the

algorithm on its performance, and finally, the obtained

results compared with other meta-heuristics.

2. Problem formulation

The MRCPSP formulated as follows: A set of activities

 that has to schedule preemptively

based on availability of renewable resources
 | | and non-renewable resources

 | | besides their precedence relations. Each

renewable resource has a constant value of

availability

 in different time periods, while each non-

renewable resource is limited to a fixed value of

 in total project running period. Each activity

performs in execution mode with

 | | . Moreover, the execution mode for

activity represents by a triple

 , which

includes predefined values of as performing duration,

 units of resource , and
 units of resource

 as the amount of needs of the activity to

renewable and non-renewable resources respectively. In

set N, 0 and n+1 indices indicate start and end dummy

activities of the project, in addition have only one

execution mode and their execution duration besides

amount of needs to renewable and non-renewable

resources are equal to zero units. Suppose that, G (N,) is

an acyclic graph, then the network of a project can be

shown as an AON topological order, so that the time log of

all activities are equal to zero, and P is the set of pairs of

activities which shows a finish-start precedence

relationship between them. If schedule S defines by a

vector of activities, then it will be feasible, only if respects

to all precedence relations of activities and resource

limitation of the project. In this paper, the objective

function is finding a feasible solution that minimizes the

project makespan. [20] introduced the following linear

programming to solve the MRCPSP:

The binary variable is equal to one, when activity j in

mode m starts at time , otherwise it is equal to zero.

3. Genetic algorithm for the MRCPSP

[21] introduced genetic algorithm (GA), which inspired by

evolutionary biology, to solve complicated optimization

problems. GA uses natural selection, crossover, and

mutation operators to generate individuals of the next

generations of the population.

Fig. 2. a conceptual view of the performing steps of the proposed

algorithm.

In contrast to the regular genetic algorithm, GAG is based

on the bi-population approach, as proposed by [19] for

 ∑

 (1)

∑ ∑

| |

 (2)

∑ ∑ ()

| |

 ∑ ∑

| |

(3)

∑ ∑

| |

∑

(4)

∑ ∑

| |

∑

(5)

 | |

(6)

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

68

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

RCPSP, which one of them contains forward schedules

(POPf) and the other one includes backward schedules

(POPb). After generating initial population randomly, two

greedy mode selection methods perform to balance the

amount of resource requirements of activities of each

schedule and thus reduce the number of infeasible

schedules, in this way the primary population of POPf will

be generated. Next, the population individuals will be

evaluated, and the genetic operators will be performed on

them. After that, the POPf population by using forward-

backward procedure will be converted to POPb and the

genetic operators will be performed on its individuals too.

This procedure will be continued until the termination

condition meets. Fig. 2, represents a conceptual view of

the performing steps of the algorithm.

3.1. Solution representation

Four vectors with equal size used to represent solutions, so

that the first vector contains a sequence of activities

(Index), and the seconds to third vectors are execution

mode (Mode), start time (ST) and finish time (FT) of each

activity respectively. Fig. 1b illustrates this four vector

representation and Fig. 1c shows a feasible solution

instance for the network of Fig. 1a.

3.2. Forward-backward procedure

Forward serial schedule generation scheme (S-SGS)

proposed by [22], and it works as follows: it starts at the

beginning of the priority list of activities, and schedule

them at the earliest possible time with respect to the

limitation of the resource existences and their precedence

relations. Furthermore, in order to generate a backward

schedule, sort activities descending based on their finish

time, then schedule them with respect to their reverse

precedence relations. After that, to obtain a forward

schedule from its backward schedule, first sort activities

ascending, then if a gap between start times of the project

from zero existed, the start time and finish time of

activities are shifted to the left. The alternative conversion

of forward schedules to their backward schedules and vice

versa called the forward-backward procedure and was

proposed by [23] as a local search for RCPSP. For

example, Fig. 1d and Fig. 1e draw Gantt charts of a

forward schedule and its backward schedule for the

network of Fig. 1a.

3.3. Preprocessing

[24] introduced a reduction procedure for reducing search

space of the problem, so that in each activity excludes

those modes which are inefficient, amount of their

resource usage plus execution duration are higher than the

other modes, or non-executable, violate the resource

constraints. Moreover, this procedure removes redundant

non-renewable resources, which the sum of the maximal

request for them does not exceed their availabilities.

3.4. Initial population

GAG uses two different populations: population POPf

which contains only forward schedules and population

POPb that includes only backward schedules. Both

populations have the same number of POP solutions. First,

the algorithm generates the schedules of POPf randomly,

next one of the greedy mode selection methods selects by

chance and performs on them in order to balance the

resource requirements of activities in each schedule and

thus reduce the number of primary infeasible solutions.

 ∑ ∑

| |

∑

 | |

 | |

 | |

 (

)

 {

 (

)} ;

 , | |

 {

 } , | |

Algorithm 1: Greedy mode selection procedure number 1 which by

selection proper modes for activities balances the amount of usage of
non-renewable resources.

 ∑ ∑

| |

∑

 | |

 | |

 (

)

 {
∑

 | |

∑
 | |

}

 | |

 (

)

 {
∑

 | |

∑
 | |

}

 | |

 {
∑

 | |

} | |

Algorithm 2: Greedy mode selection procedure number 2 which by

selection proper modes for activities balances the amount of usage of
non-renewable resources

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

69

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

3.5. Greedy mode selection methods

After generating the initial population randomly, the

greedy mode selection methods by selecting a proper

execution mode for each activity try to balance the amount

of usage of the resources with respect to their availabilities,

so that the number of infeasible schedules in the primary

population will be decreased. Algorithm 1 and Algorithm

2 are the pseudo code of this greedy execution mode

selection methods. In fact, both methods attempt to select

an execution mode for each activity that does not lead to

use non-renewable resources exceedingly and amount of

usage of all non-renewable resources become closed to

each other. (See section 2)

Fig. 3. performing genetic operators on two selected parents, i and j, and
generating a new schedule

3.6. Details of the genetic algorithm

In this section, the details of the bi- population genetic

algorithm will be discussed.

3.6.1. Evaluation

An infeasible solution is a schedule which violates

precedence relations between activities or resource

availability constraints. Because of using serial SGS in

GAG, generating an infeasible solution which violates

precedence relations between activities or uses renewable

resources more than their availability in different time

periods is impossible. Therefore, the definition of an

infeasible solution changes here to a solution which uses

non-renewable resources exceedingly. In an initial

population of GAG maybe too many infeasible solutions

generated, while performing the algorithm they convert to

high-quality feasible ones. In consequence, GAG needs a

mechanism to keep infeasible solutions in its population,

in addition, evaluate their quality, moreover use them to

generate and improve the next generations. The penalty

function of [5] has been used in the algorithm due to

implement mentioned mechanism so that a constant

value adds to makespan of the schedule per each unit of

illegal usage of non-renewable resources. Suppose that,

 is the finish time of the last activity in the i-th

schedule in the population, and CP is the value of the

critical path method of the project, then the value of the

objective function [5] will be calculated by equation (7).

 {

 ∑

 (
)

(7)

 ∑ ∑

| |

∑

 | |

Obviously, the lower fitness value for a schedule means

that schedule is more valuable, furthermore the value of

function (7) never become lower than the value of the

critical path method, which is a lower bound for each

project. (See section 2)

3.6.2. Parent Selection

Parent selection is one of the main operators of the genetic

algorithm. GAG uses roulette wheel selection to select two

parents i and j from the current population, POPf or POPb.

In this type of selection, schedules with a lower value of

the objective function, more valuable schedules, have a

higher probability to select.

3.6.3. Crossover operator

Genetic crossover operator performs on two selected

parents, i and j, in one-point fashion and generates a child

which inherit the attributes of its parents. In the one-point

crossover, an integer number “Crosspoint” selected

randomly in an interval between 1 and length of activities’

vector (index), next all left side data of Crosspoint copy

from parent j and the remaining data from parent i copy to

the child.

=

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

70

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

3.6.4. Mutation

Genetic mutation operator applies to create tiny tweaks in

the attributes of different individuals of the population.

GAG uses two types of mutation operators: exchange

activity mutation which tries to exchange the place of two

random activities without violating their precedence

constraints, in addition, change execution mode mutation

which attempts to change execution mode of a random

activity to another legal one. Both of these operators

perform by Pmut probability. Fig. 3 illustrates an example

of performing these genetic operators.

3.6.5. Update

After performing the genetic crossover operator, the

promising test on the generated child applies, so that if the

test result was true, then activities of the generated child

sort based on their precedence constraints and the mutation

operators by Pmut probability perform on them, finally

calculate the start time and finish time of the activities.

Otherwise, if the test result was false, the generated child

omits without submitting to the SGS. Equation (8) and (9)

calculate the total non-renewable resource usage (TNN)

and total work contents of a schedule (TWC) respectively.

Furthermore, HC in equation (10) is the promising

condition, and its value will be true, if the value of TNN,

which is the total request for non-renewable resource, or

the value of TWC, which is an estimation of the project

makespan, of the generated child, are not more that their

values for its parents. In fact, if the amount of needs to

non-renewable resources become higher, the probability of

being infeasible increases while the amount of needs to

renewable resources and the execution time duration of

activities become higher, the gap between project

makespan and its value of the critical path method

increases. (See section 2)

(8)
 ∑ (

 ∑ ∑

| |

∑

)

| |

(9)

 ∑ ∑

| |

(10)
 [

]

 [

]

Fig. 3 shows an example of performing genetic operators

for the network of Fig. 1a. Obviously, two unequal

chromosomes (schedule), i and j, are selected by roulette

wheel selection, next by applying crossover operator on

them, a new child generated, after that because the value

of HC was valid, the mutation operators by Pmut

probability perform on it, finally the parent with equal or

higher value of objective function, means less valuable

schedule, than the generated child replaced by it. If the

value of the objective function of the parents were equal to

each other, one of them replaces by the child randomly.

Therefore, the size of the population is always fixed.

4. Computational experiments

We code and run our algorithm in C#.net 2010 on Lenovo

G510 with an Intel core i5 2.5 GHz processor and use the

standard MRCPSP test dataset J10, J12, J14, J16, J18, J20

and J30 of the well-known PSPLIB. The PSPLIB are

generated by the problem generator ProGen designed by

[25]. The optimal solutions for J10–20 sets, that have at

most 20 activities, are available, however no optimal

solutions for J30 set have been found. Each dataset

contains 640 instances, some of which are infeasible.

Table 1 shows the number of instances in each set that at

least have one feasible solution, Fs column, besides the

number of activities, Acts row, in each set.

Instances of this dataset have 10 to 30 activities, moreover,

each activity has 3 execution modes, which each of them

determines execution duration and amount of resource

requests of that activity. Furthermore, 2 renewable and 2

non-renewable resources exist for each project, in addition,

execution duration of each activity varies between 1 and

10. Suppose that, S is the number of instances in each set

that at least have one feasible solution (i.e. S = 547, in J10),

 and are the value of the objective function

(7) and the best result value for i-th instance, respectively,

so that, the formula (11) calculates the value of the

average percentage of deviation from best known results.

(11)

∑

4.1. The training set

A training set contains 700 random instances, which 100

random instances selected from each J10-J30 sets, has

been used to investigate the effect of different parts of the

algorithm on its final performance, besides due to reduce

the impact of chance element on the obtained results, each

instances of the training set 10 times sent to the algorithm

and the average of these 7000 values from formula (11),

whose is equal to the value of the critical path

method of the project (lower bound) for the i-th instance,

has been reported as the value of F(x). In all of the

experiments that have been done on this training set, the

termination condition was equal to 500 generated

schedules and TCPU(ms) denotes as the average CPU time in

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

71

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

millisecond that the algorithm reached to the termination

condition.

Table 1: the number of feasible instances in each set (Fs) besides the
number of activities in each set

J30 J20 J18 J16 J14 J12 J10

552 554 552 550 551 547 536 Fs

30 20 18 16 14 12 10 Acts

Table 2: the impact of the greedy mode selection methods-on the trainig

set-(500 generated schedules)

G1+G2 G2 G1 RND Sch

143 150 1271 2576 Inf
0

160.35 160.85 220.90 376.30 F(x)

0 8 18 446 Inf

500 26.31 26.72 27.01 143.56 F(x)

89.90 85.25 83.02 868.66 TCPU(ms)

Table 3: the impact of the effect of the mutation and crossover operators-

on the trainig set-(500 generated schedules)

C+ C

26.31 27.32 27.54 83.45 48.93 F(x)

89.90 79.75 76.39 43.07 48.45 TCPU(ms)

Table 4: the best value of Pmut- on the training set- (500 generated
schedules)

0.9 0.7 0.5 0.3 0.1 Pmut

26.31 28.04 29.54 31.81 36.36 F(x)

89.90 63.70 56.64 53.37 45.53 TCPU(ms)

4.2. The impact of the mode selection methods

Suppose that, Sch is the number of generated schedules by

the algorithm, Inf is the number of infeasible instances

which the algorithm couldn’t even find a feasible solution

for them after reaching to the termination condition. Table

2 shows the effect of using greedy mode selection methods

on the performance of the algorithm. (See section 4.1)

Obviously, in the initial population, when Sch is equal to

zero, without using the greedy methods and generating the

population randomly (RND), the algorithm for more than

third of the instances started its search process from an

infeasible point, and even after reaching to the termination

condition, when Sch is equal to 500, reported 446 still

infeasible schedules. The great gap between initial

schedules and feasible solutions for the problem has been

inherited by the next generations, and thus they omitted

just as they created, because of applying the promising

condition (10), so didn’t submitted to the SGS and caused

the increasing the algorithm execution time (TCPU(ms)). In

contrast, the number of infeasible solutions by using the

first greedy procedure (G1) reduced to 18, and by applying

the second greedy procedure (G2) reduced to 8, finally by

performing both of them (G1+G2) randomly with 0.5

probability reduced to zero, because the algorithm started

its search process from feasible or near feasible points and

thus the next generations, which produced by the

combination of good features of their parents, have higher

quality and their deletion ration by the promising condition

(10) has been decreased, thus the algorithm terminated

faster than RND. As it is obvious in the F(x) rows, by

reducing the number of infeasible schedules, the quality of

the final results improved and the best results obtained by

using the combination of both of the greedy mode

selection methods.

4.3. The impact of the genetic operators

Table 3 shows the effect of using crossover and mutation

operators on the performance of the algorithm. Suppose

that, C shows the only usage of the crossover operator in

the genetic algorithm, moreover and mean the only

usage of the exchange activities mutation operator and the

only applying the change execution mode mutation

operator on the chosen parent with lower value of the

objective function (more valuable), respectively. (See

section 4.1)

Table 3 shows that the worst case obtained by using ,

because the precedence relation between activities

constraints limit their exchange extremely, so the place of

an activity can’t change with the other one easily. In the

other side tiny tweaks in execution mode of activities can

lead to big changes in amount of usage of resources or

project makespan, therefore the usage of had the most

effect among applying single operators. Furthermore,

using C reported better results than , because it tried to

produce a higher quality child than its two parents by

combining their attributes. In fact, the GA by applying

only mutations, in single operators or the combinatorial

one (), degrades to a local search, so stick into a

local minimum, also by using only crossover operator acts

like a random search. Ultimately by observing (
) column, which demonstrates the using of all three

proposed operators, concludes that the best results

obtained by balancing the exploration and exploitation.

Notice that except the last column (), which

the promising condition (10) performed after execution of

the crossover operator and before execution of the

mutation operators, in the other columns the promising

condition performed just after execution of the single or

combinatorial operators.

The computational results in table 4 show that the best

value for Pmut, the probability of performing mutation

operators, is equal to 0.9. The high value of Pmut means

the frequent usage of the mutation operators which leads to

increase computational time besides exploitation in the

algorithm. In contrast to the other genetic algorithm in the

literature, like MHGA [7], TGLS [8], PVGA [10] and

CGA [14], in GAG did not used any local search

procedure to tweak execution modes of activities during

running the GA in order to improve the quality of the

individuals, therefore to have more exploitation we

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

72

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

increased the probability of performing of the genetic

mutation operators. Finally, the comparison of TCPU(ms) and

F(x) rows in both tables 3 and table 4 shows that the

results quality level have a direct influence on the deletion

rate of the promising condition (10) thus the algorithm

execution time. In the other word, when the quality of

feasible solutions raise, the competition between parents

and their children for survival increase too, and thus the

average computational time of the algorithm will be higher.

4.4. Determination of the population size

The large population size voids its homogeneity, also

increases the computational time, and in the case of time

limitation generates only a few schedules, consequently

restricts the performance of the GA too. In the other hand,

small population size prevents the evolutionary

performance of the algorithm. Therefore, we need to

determine the population size relative to the size of the

problem. When configuring the algorithm, we have found

out that the number of activities of each project besides the

population size have a direct influence on the performance

of the algorithm. Moreover, we have noticed the number

of activities in each project is negatively related to the

population size, if the number of activities in project

increases, the performance of the algorithm will increase

by decreasing the population size. Similar results were

found in [19], [26], [27] and [10]. A nonlinear least

squares regression based on the best population size values

for the different number of activities by the formula (14)

can be calculated, in which POP is the population size and

N is the number of activities. The both population, POPf

and POPb, have the same number of individuals POP, so

the total population size in the algorithm is equal to
 .

(12) ⌊

⌋

4.5. Comparison with other meta-heuristics

In the literature of the MRCPSP, the maximum number of

generated schedules and the maximum CPU time

consumed are mostly used as the stopping conditions for

comparison. According to the literature, we used the

following three kinds of stopping conditions: (1) 5000

generated schedules; (2) 1 s CPU time; (3) 0.15 s CPU

time per activity. We run the GAG 10 times independently

for each instance. The statistical results are reported in

Tables 5, 6 and 7, respectively. Moreover in the following

tables , columns

denote variance, maximum, minimum and average

percentage of instances which optimum solutions have

been found in each set respectively, besides

 columns mean

variance, maximum, minimum and average percentage of

deviation of the algorithm’ results from the best results,

which is optimum values for J10 to J20 sets and the

critical path method values as lower bound of projects for

J30 set, that are calculated by the formula (11) respectively,

also Fs ,TCPU(S) and Set columns denote the number of

instances in each set that at least have one feasible solution,

the average CPU time in seconds that the algorithm

reached to the termination condition, and the sets of the

PSPLIB standard library, respectively. In the mentioned

tables, the FS column illustrates that all obtained results

were feasible, moreover the values of column,

that are the variances for all the problem sets, are very

small, which shows that the GAG is very stable. In

addition, the values of the TCPU(S) column demonstrates

that the average computational time of the algorithm

increases as the problem size increases too.

Next, we compare the GAG with some existing algorithms

based on the PSPLIB to further show the effectiveness of

the GAG. The compared algorithms include the hybrid

algorithm of ACO and SA [4] denoted as TAS, the

combinatorial PSO algorithm [5] denoted as CPSO, the

scatter search algorithm [6] denoted as PSS, the hybrid GA

[7] denoted as MHGA, the a two-phase genetic local

search algorithm [8] denoted as TGLS, the hybrid rank

based evolutionary algorithm [9] denoted as RBEA, the

genetic algorithm [10] denoted as PVGA, the scatter

search algorithm [11] denoted as PVSS, the ALNS-based

algorithm [12] denoted as ALNS, the shuffled frog-leaping

algorithm [13] denoted as SFLA, the hybrid algorithm of

GA and SA [14] denoted as CGA, the cooperative discrete

particle swarm optimization algorithm [15] denoted as

CDPS, the ACO [16] denoted as ACO, and the hybrid

local search technique with EDA [17] denoted as SEDA.

Table 8, 9 and 10 compare the obtained results of GAG

with other algorithms based on 5000 generated schedules,

1 seconds, and 0.15 second per each activity as termination

conditions. Furthermore, the one-tailed t-test is adopted to

explain whether the GAG is significantly better than the

compared metaheuristics. We denote of our

algorithm as and of the compared algorithm,

which has the closest value to the GAG, as . Suppose

the null hypothesis () is equal to μ , and the

alternative hypothesis () is μ . The statistic can be

calculated as follows:

(13)

μ

(

√
)

That is the number of independent running tries of the

GAG, and √ is the value of standard

deviation of samples which calculated based on the

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

73

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

 in tables 5 through 7. According to the obtained

value of formula (13), we can find the equivalent
 from the corresponding lookup table of the

that is the probability to make a mistake if accepted as

true. All the of the applying on results

of GAG and of the compared algorithm, which

has the closest value to it, are listed in the last rows of

tables 8 through 10.

Each schedule assigns a start time to each activity of the

project by SGS. The number of generated schedules

calculates based on the number of times which each

activity of the project gets a feasible start time divides by

the number of the project activities [28]. In contrast to the

other genetic algorithm in the literature, like MHGA [7],

TGLS [8], PVGA [10] and CGA [14], in GAG did not

used any local search procedure to tweak execution modes

of activities during running the GA in order to improve the

quality of the individuals, so that after performing

crossover operator and assurance of promising the new

child by condition (10), mutation operators used.

Moreover, in order to have more exploitation in the

algorithm, we increased the probability of performing of

the genetic mutation operators. In addition, if the quality of

the generated child become lower than its parents (
), it will be removed immediately without sending to

the SGS. Obviously in the table 8, which compared the

algorithms by the 5000 generated schedules as termination

condition, the results of GAG are extremely similar to the

scatter search algorithm of [11] and their results gap

increased by the growth of the problem size, finally GAG

represented better performance, while the GAG started its

search process from feasible or near feasible points by

performing greedy mode selection methods, and thus it

ignore a huge search space in initialization time, moreover

by pruning its non-promising children with condition (10)

during search process tries to avoid deviation of

improvement path besides prevent going to the ineffective

search areas. Similar results obtained in table 9 and 10,

based on the reported values of the in each

column, so that by increasing the number of activities in

the problem not only the average percentage of deviation

from the best known results in our algorithm are lower

significantly than the other metaheuristics but also the

average percentage number of problems that solved

optimally are greater significantly than the others.

Obviously in the table 10, because of the termination

condition, 150 milliseconds per each activity, which

provided more opportunity to execution for the algorithm,

in all data sets except J12 the GAG had better performance.

According to the above comparisons between the GAG

and the other metaheuristics, it can be concluded that our

proposed GAG is effective in solving the MRCPSP.

Table 5: GAG results-on the PSPLIB datasets-(5000 generated schedules)

 Fs TCPU(S) Set

7.31E-7 100 99.81 99.94 100 0.025 1.47E-5 0.009 0.000 0.002 J10

2.14E-6 99.45 98.90 99.20 100 0.064 6.98E-5 0.053 0.028 0.037 J12

4.48E-5 98.36 95.82 97.46 100 0.140 6.19E-4 0.155 0.065 0.094 J14

2.64E-5 97.09 95.27 96.18 100 0.208 5.49E-4 0.192 0.111 0.149 J16

3.95E-5 95.28 93.11 94.11 100 0.303 7.61E-4 0.260 0.169 0.218 J18

9.11E-5 93.32 90.61 92.09 100 0.577 1.05E-3 0.328 0.238 0.277 J20

n/a n/a n/a n/a 100 1.512 1.31E-3 13.507 13.374 13.421 J30

Table 6: GAG results-on the PSPLIB datasets-(1 second)

 Fs TCPU(S) Set

2.23E-6 100 99.62 99.88 100 1 4.96E-5 0.019 0.000 0.005 J10

8.32E-6 99.26 98.35 98.92 100 1 2.76E-4 0.080 0.025 0.048 J12

3.36E-5 97.27 95.09 95.95 100 1 4.47E-4 0.175 0.107 0.152 J14

4.18E-5 94.72 92.90 94.07 100 1 6.60E-4 0.276 0.197 0.225 J16

1.24E-4 90.94 88.04 89.47 100 1 1.45E-3 0.473 0.362 0.414 J18

9.07E-5 87.00 83.93 85.09 100 1 1.27E-3 0.625 0.504 0.584 J20

n/a n/a n/a n/a 100 1 4.05E-3 14.969 14.739 14.826 J30

Table 7: GAG results-on the PSPLIB datasets-(0.15 s CPU time per activity)

 Fs TCPU(S) Set

0.00E-0 100 100 100 100 1.8 0.00E-0 0.000 0.000 0.000 J10

4.31E-6 99.63 98.90 99.25 100 2.1 1.10E-4 0.048 0.014 0.034 J12

3.99E-6 98.00 97.27 97.77 100 2.4 5.13E-5 0.096 0.072 0.082 J14

2.74E-5 97.81 95.81 97.25 100 2.7 4.39E-4 0.156 0.079 0.100 J16

6.51E-5 96.37 93.65 95.18 100 3.0 7.67E-4 0.220 0.129 0.172 J18

4.84E-5 93.68 91.15 92.53 100 3.3 8.54E-4 0.328 0.219 0.266 J20

n/a n/a n/a n/a 100 4.8 2.16E-3 13.345 13.171 13.262 J30

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

74

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Note: The optimal values of J30 are not available.

Table 8: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results –
(5000 generated schedules as termination condition)

 (%) (%)

 J10 J12 J14 J16 J18 J20 J30 J10 J12 J14 J16 J18 J20

TAS 0.16 0.21 0.97 1.40 1.40 1.98 - 96.01 93.89 82.19 84.18 81.42 76.20

CPSO 0.03 0.09 0.36 0.44 0.89 1.10 - 99.25 98.47 91.11 85.91 79.89 74.19

PSS 0.05 0.11 0.38 0.52 0.84 1.03 - 99.07 98.35 93.66 87.66 83.33 79.24

MHGA 0.08 0.27 0.31 0.50 0.69 0.98 - 99.01 96.53 92.92 90.00 84.96 80.32

TGLS 0.33 0.52 0.93 1.08 1.32 1.69 18.33 95.16 90.57 82.03 77.39 73.38 66.66

RBEA 0.14 0.24 0.77 0.91 1.30 1.62 - 97.31 94.94 83.18 77.27 70.78 63.16

PVGA 0.01 0.09 0.22 0.32 0.42 0.57 13.75 99.63 98.17 94.56 92.00 88.95 85.74

PVSS 0.00 0.02 0.08 0.15 0.23 0.32 13.66 100 99.45 97.28 96.73 94.75 87.73

ALNS 0.05 0.20 0.55 0.78 1.14 1.52 15.96 99.01 95.59 88.75 84.76 78.75 72.87

SFLA 0.10 0.21 0.46 0.58 0.94 1.40 13.46 97.92 95.97 90.86 86.49 79.43 72.84

CGA 0.16 0.31 0.63 0.49 0.52 1.04 - 97.39 93.95 83.48 82.36 74.23 68.91

CDPS 0.05 0.21 0.46 0.82 1.21 1.62 - 98.99 95.94 90.41 82.61 75.49 70.92

ACO 0.09 0.13 0.40 0.57 1.02 1.10 - 98.30 96.50 90.30 86.90 76.10 72.40

SEDA 0.09 0.12 0.36 0.42 0.85 1.09 - 97.62 97.11 92.31 91.05 82.46 77.57

GAG 0.00 0.03 0.09 0.14 0.21 0.27 13.42 99.94 99.20 97.46 96.18 94.11 92.09

P-value 0.964 0.999 0.946 0.463 0.116 0.001 0.000 0.965 0.999 0.209 0.995 0.994 0.000
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold.

Table 9: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results –

(1 second CPU time as termination condition)

 (%) (%)

 J10 J12 J14 J16 J18 J20 J10 J12 J14 J16 J18 J20

RBEAa 0.09 0.13 0.43 0.46 0.67 0.91 98.6 97.3 90.00 88.90 84.10 78.52

SFLAb 0.03 0.03 0.13 0.21 0.46 0.91 99.22 99.12 96.64 94.44 88.46 80.42

GAGc 0.005 0.04 0.15 0.22 0.41 0.58 99.88 98.92 95.95 94.07 89.47 85.09

P-value 0.000 0.996 0.995 0.953 0.002 0.000 0.000 0.991 0.997 0.947 0.009 0.000
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold.

a
 Pentium 3.00 GHz

b T7500 2.2 GHz
c Intel 2.5 GHz

Table 10: Comparison with the other metaheuristics- average percentage of gap with the best results (11)/ average percentage of obtained optimum results
– (0.15 second per activity CPU time as termination condition)

 (%) (%)

 J10 J12 J14 J16 J18 J20 J10 J12 J14 J16 J18 J20

RBEA 0.03 0.05 0.26 0.25 0.45 0.58 99.25 98.72 93.93 93.09 88.22 84.81

SFLA 0.03 0.02 0.08 0.13 0.28 0.57 99.37 99.48 97.99 96.73 92.50 86.55

GAG 0.000 0.03 0.08 0.10 0.17 0.26 100 99.25 97.77 97.25 95.18 92.53

P-value 0.000 0.999 0.434 0.000 0.000 0.000 0.000 0.996 0.996 0.005 0.000 0.000
Note: the closet value to the results of GAG denoted as italic and the best results in each column denoted as bold.

5. Conclusion

The multimode resource-constrained project scheduling

problem (MRCPSP) is an extension of the single-mode

resource-constrained project scheduling problem (RCPSP).

In this problem, each project contains a number of

activities which precedence relationship exist between

them besides their amount of resource requirements to

renewable and non-renewable resources are limited to the

resources availabilities. Moreover, it is proved that in

projects that contain at least 20 activities and 3 execution

modes per each activity, exact algorithms, like B&B and

B&C, cannot find an optimum solution in acceptable

execution time. The MRCPSP is NP-hard, in addition,

proved that if at least 2 non-renewable resources existed,

finding a feasible solution for it is NP-complete. In this

paper, we have introduced two greedy mode selection

methods to assign execution mode to the initial schedules’

activities. By the aim of these greedy methods can

generate feasible or near feasible schedules, thus, can use

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

75

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

them in the initialization phase of population-based

algorithms. In order to show the efficiency of these greedy

methods, we have implemented them in the initialization

phase of a bi-population genetic algorithm to solve the

MRCPSP. In addition, our GA used an effective penalty

function to preserve infeasible schedules in the population

and give improvement chance to them, also by pruning

non-promising children, which generated during

performing the algorithm, tried to reduce search space.

The computational results show the well performance of

the proposed algorithm by increasing the number of

activities in the projects in comparison with the other

meta-heuristics in the literature.

References
[1] Kolisch R, Drexl A (1997) Local search for non-preemptive

multi-mode resource constrained project scheduling. IIE

Transactions 29:987–999

[2] Spreche A, Drexl A (1998) Multi-mode resource constrained

project scheduling by a simple, general and powerful

sequencing algorithm. European Journal of Operational

Research 107:431–450, DOI 10.1016/S0377 2217(97)00348-

2

[3] Boctor F (1993) Heuristics for scheduling projects with

resource restrictions and several resource-duration modes.

International Journal of Production Research 31:2547–2558,

DOI 10.1080/00207549308956882

[4] Ling C (2004) A two-phase hybrid optimization for solving

multi-mode resource-constrained project scheduling

problems. Specializes in teaching 96:257–270

[5] Jarboui B, Damak N, Siarry P, Rebai A (2008) A

combinatorial particle swarm optimization for solving multi-

mode resource-constrained project scheduling problems.

Applied Mathematics and Computation 195:299–308

[6] Pourghaderi A, Torabi S, Talebi J (2008) Scatter search for

multi-mode resource constrained project scheduling

problems. In: Industrial Engineering and Engineering

Management, IEEM 2008. IEEE International Conference,

pp 163–167, DOI 10.1109/IEEM.2008.4737852

[7] Lova A, Tormos P, Cervantes M, Barber F (2008) A hybrid

genetic algorithm for the multi-mode resource constrained

project scheduling problem. In: Eleventh International

Workshop, PMS 2008, pp 189–192

[8] Tseng L, Chen S (2009) Two-phase genetic local search

algorithm for the multi-mode resource-constrained project

scheduling problem. IEEE Transactions on Evolutionary

Computation 13:848–857, DOI

10.1109/TEVC.2008.2011991

[9] Elloumi S, Fortemps P (2010) A hybrid rank-based

evolutionary algorithm applied to multi-mode resource

constrained project scheduling problem. European Journal of

Operational Research 205:31–41

[10] Peteghem V, Vanhoucke M (2010) A genetic algorithm for

the preemptive and nonpreemptive multi-mode resource

constrained project scheduling problems. European Journal

of Operational Research 201:409–418

[11] Peteghem V, Vanhoucke M (2011) Using resource

scarceness characteristics to solve the multi-mode resource

constrained project scheduling problem. Journal of Heuristics

17:705–728, DOI 10.1007/s10732-010-9152-0

[12] Muller L (2011) An adaptive large neighborhood search

algorithm for the multimode rcpsp. DTU Management

Engineering 3:25

[13] Wang L, Fang C (2011) An effective shuffled frog-leaping

algorithm for multi-mode resource-constrained project

scheduling problem. Computers and Operations Research

181:4804–4822, DOI 10.1016/j.ins.2011.06.014

[14] Bilolikar V, Jain K, Sharma M (2012) An annealed genetic

algorithm for multi-mode resource constrained project

scheduling problem. International Journal of Computer

Applications 60(1):36–42

[15] Shen H, Li X (2013) Cooperative discrete particle swarms

for multimode resource-constrained projects. In: IEEE 17th

International Conference on Computer Supported

Cooperative Work in Design, pp 31–36, DOI

10.1109/CSCWD.2013.6580935

[16] Li H, Zhang H (2013) Ant colony optimization-based multi-

mode scheduling under renewable and non-renewable

resource constraints. Computers and Operations Research

35:431–438

[17] Soliman O, Elgendi E (2014) A hybrid estimation of

distribution algorithm with random walk local search for

multi-mode resource-constr ined project scheduling

problems. International Journal of Computer Trends and

Technology 8:57–64

[18] Coelho J, Vanhoucke M (2015) An approach using sat

solvers for the rcpsp with logical constraints. European

Journal of Operational Research DOI

10.1016/j.ejor.2015.08.044

[19] Debels D, Vanhoucke M (2005) A bi-population based

genetic algorithm for the resource-constrained project

scheduling problem. Lecture Notes on Computer Science

3483:378–387

[20] Talbot F (1982) Resource-constrained project scheduling

with timeresource tradeoffs: The nonpreemptive case.

Management Science 28:1197 1210

[21] Holland J (1975) Adaptation in natural and artificial

systems: an introductory analysis with applications to

biology, control, and artificial intelligence. University of

Michigan Press

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

76

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

[22] Kelley J (1963) The critical-path method: Resources

planning and scheduling. In: Industrial Scheduling. Prentice-

Hall, New Jersey, pp 347–365

[23] Li K, Willis R (1992) An iterative scheduling technique for

resource-constrained project scheduling. European Journal of

Operational Research 56:370–379

[24] Sprecher A, Hartmann S, Drexl A (1977) An exact

algorithm for project scheduling with multiple modes. OR

Spectrum 19:195–203

[25] Kolisch R, Sprecher A (1997) Psplib - a project scheduling

problem library: Or software-orsep operations research

software exchange program. European Journal of Operational

Research 96:205–216, DOI 10.1016/S0377 2217(96)00170-1

[26] Hartmann S (2001) Project scheduling with multiple modes:

a genetic algorithm. Annals of Operations Research 102:111–

135

[27] Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode

resource-constrained project scheduling problem with genetic

algorithms. Journal of the Operation Research Society

54:614–626

[28] Kolisch R, Hartmann S (2006) Experimental investigation of

heuristics for resource constrained project scheduling.

European Journal of Operational Research 174:23–37

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 4, No.22 , July 2016
ISSN : 2322-5157
www.ACSIJ.org

77

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

