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Abstract 
Due to the significant increment of the volume of interactions 

among the population, probabilistic process on complex network 

can be often utilized to analyse diffusion phenomena in the 

society, then a number of researchers have studied especially 

from the perspectives of social network analysis, computer virus 

spread study, and epidemics study. So far, it has been believed 

that the largest eigenvalue and the principal eigenvector of the 

adjacency matrix can well approximate the dynamics on 

networks, but the accuracy of this approximation method has not 

study extensively. In our previous work, we found that not only 

the largest eigenvalue and the principle eigenvector but also the 

other eigenvalues and eigenvectors need to be considered when 

analysing the diffusion process on real networks. In this paper, 

we proposed a new centrality measure, the infection diffusion 

eigenvector centrality (IDEC), which considers all eigenvalues 

and eigenvectors. Our comparison results indicates that the IDEC 

shows better predictability than other centrality measures when 

the effective infection ratio is low, which will provide us with a 

good insight for practical application for developing the effective 

infection prevention methodology. Also, another interesting 

finding is that the eigenvector centrality shows poor 

predictability especially on the real networks. In addition, we 

conduct the recovery probability enforcement simulation, which 

highlights the advantage of IDEC for the range below the critical 

point. 

Keywords: Infection, SIS model, Complex network, Centrality, 

Eigenvalue, Eigenvector 

1. Introduction 

Probabilistic diffusion analysis on complex network is 

being treated as having the potential applicability due to 

the well-connected modern society. Recently, the 

probabilistic diffusion models are often used to analyze the 

information spreads in the internet. Also, it has been often 

used to model and analyze the virus spread among the 

population. Recent concern from computer virus spread is 

also one of the applications which can be analysed by the 

probabilistic diffusion models.  

In this paper, we utilize the Susceptible-Infected-

Susceptible (SIS) model which is one of the typical 

probabilistic diffusion models and has been often used to 

analyse the infectious diseases and computer virus spread 

[1-6]. In the SIS model, every node in a network is 

probable to be put into two states (susceptible state and 

infected state). Then, the susceptible nodes are influenced 

from the infected-state neighbour nodes at a certain 

infection probability. At the same time, the infected nodes 

are probable to return to the susceptible state again at a 

certain recovery probability. Many researches have 

analysed and reported that the critical phenomena can be 

observed in the SIS model and, identifying the critical 

point have been getting significant attentions because it 

promote the efficiency of control the probabilistic 

diffusion dynamics [4,7-10]; for instance, it can help to 

propose the most cost effective vaccination strategy to 

prevent outbreaks of disease.  

The first analysis of the SIS model for homogeneous 

network is conducted by Kephart and White [7]. Then, 

Wang et al. [8] analysed the SIS diffusion model from the 

spectral point of view. They propose that the critical point 

for any network can be approximated by the inverse of the 

largest eigenvalue of the adjacency matrix of the network. 

Mieghem et al. [9] established “the N-intertwined mean 

field approximation model” which provides with more 

accurate and rigorous analysis for the SIS model. In 

addition, Mieghem et al. [11] also rigorously analysed 

from spectral point of view, which also reported that the 

epidemic threshold can be approximately calculated by the 

inverse of the largest eigenvalue of the adjacency matrix of 

networks. However, in our previous work [12], based on 

the quantification of the accuracy of the approximation 

method utilizing only the largest eigenvalue of the 

adjacency matrix from the spectral point of view, we 

report that the accuracy is comparatively low in some real 

networks and not only the largest eigenvalue but also the 

other eigenvalues need to be considered on the real 

networks. 

Centrality is a terminology that represents the relative 

importance of each node in a network. So far, a lot of 

definitions of the centrality metrics have been proposed 

[13]. Identifying the important nodes in a network is 

critical to control the diffusion dynamics occurring on the 

network and recently getting significant attention [e.g. 14]. 

In this paper, we propose a new centrality measure that is 
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derived from the analysis of the SIS diffusion model from 

spectral point of view. The proposed centrality measure, 

infection diffusion eigenvector centrality (IDEC), 

considers not only the largest eigenvalue and the principal 

eigenvector but also the non-largest eigenvalues and the 

corresponding eigenvectors. Then, IDEC shows better 

predictability to find the vulnerable node(s) for the SIS 

model in the real networks than that of the existing 

centrality measures, such as degree centrality, eigenvector 

centrality, and Alpha-centrality. In addition to that, we 

conduct the numerical simulation of the SIS diffusion 

model with enforcing the recovery probability being based 

on the significance of each centrality measures.  

In the remaining of this paper, in the second section, we 

review some existing analytical frameworks. In the third 

section, we introduce our analytical frameworks from the 

spectral point of view. In the fourth section, we review the 

typical centrality measures. Then, the new centrality 

measure we propose is introduced in the fifth section and 

also the comparison results of predictability with the other 

centrality measures are discussed. In the sixth section, the 

recovery enforcement simulation results are reported. 

Finally, we conclude this paper in the seventh section. 

2. Analytical Frameworks of Probabilistic 

Diffusion on Networks 

2.1 Critical Point of the SIS Model 

One of the important characteristics of the probabilistic 

diffusion on networks is the critical phenomenon. When 

investigating the evolution of the steady-state fraction of 

infected nodes, y(), as the function of the effective 

infection ratio,  , which can be calculated by   ⁄ , we can 

observe that y() suddenly begin to increase at a specific 

value of  . Many researchers have been tried to identify 

the threshold,   , and several approaches have been 

proposed to approximate the value of the critical point [7-

10]. One of the most widely known results is that the 

threshold can be approximated by the inverse of the largest 

eigenvalue of the adjacency matrix as follows, 

 𝑐 =
1

𝜆1(𝐀)
, (1) 

where 𝜆1(𝐀)  denotes the largest eigenvalue of the 

adjacency matrix 𝐀. 

 

2.2 N-Intertwined Mean Field Approximation Model 
 

The “N-intertwined mean field approximation” model, 

which is established by Mieghem et al. [9], results in the 

following Markov differential equation as matrix notation, 

where   ( )  denotes the probability that the node i is 

infected at time t,   is infection probability,   is recovery 

probability,  ( ) = ( 1( ),   ( ),   ( ), ,   ( ))
 

, e is 

the all-one vector, and     (  ( )) is the diagonal matrix 

in which the diagonal elements consist of 

 1( ),   ( ),   ( ), ,   ( ). According to the comparison 

results with the numerical simulation results in small 

networks, the accuracy of this model is good enough 

except the region around threshold. 

3. Analysis from the Eigenvalue Point of View 

When the fraction of infection on each node   ( ) is small, 

the second term can be ignored and the equation (2) can be 

solved using the eigenvalue decomposition, 

where 𝜆 (𝐀) is kth eigenvalue of the adjacency matrix 𝐀, 

U denotes the orthonormal matrix in which the kth column 

consists of the eigenvector of the kth eigenvalue, and    is 

eigenvector of the kth eigenvalue of the adjacency matrix 

𝐀. Assuming that the initial infection randomly occurs on 

each node i at the probability   ( ) = 1  ⁄ , the probability 

of infection on the node i at time t can be obtained as 

below, 

 

where the norm ‖  ‖ stands for the sum of all elements of 

the eigenvector corresponding kth eigenvalue, that is 

‖  ‖ =   1               ., and N denotes the 

number of nodes in the network. Furthermore, the fraction 

of infected nodes over the whole network  ( )  can be 

calculated by taking the average of   ( ) as follows, 

  ( )

  
=  𝐀 ( )      (  ( ))( 𝐀 ( )    ) 

   = ( 𝐀    ) ( )       (  ( ))𝐀 ( ), 
(2) 

=∑    (( 𝜆 (𝐀)   ) )    
 

 
 ( ), 

 ( ) =      (    (( 𝜆   )) ) 
T  ( ) 

(3) 

  ( ) =
1

 
∑   ((     ) )   ‖  ‖

 

  1

, (4) 
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∑  ( )

 

  1

 

=
1

  
∑   ((     ) )‖  ‖

 

 

  1

    

(5) 

In the previous literatures, accuracy of the approximation 

method only utilizing the largest eigenvalue have not been 

discussed extensively and considered that this approach is 

generally applicable for any network types. However, our 

analytical framework from the spectral point of view 

shows that not only the largest eigenvalue of the adjacency 

matrix but also the other non-largest eigenvalues is 

important to analyze diffusion processes more accurately, 

which was validated by numerical simulation [12]. Then 

our investigation of the real networks shows that the 

modular networks with high modularity tend to show the 

property that the influences from the non-largest 

eigenvalues and the corresponding eigenvectors are 

significant. 

4. Centrality 

Centrality is a terminology that represents the relative 

importance of each node in a network. So far, various 

types of centrality measures have been proposed in the 

scope of graph theory, social network analysis, and 

complex network study [e.g. 13].  

Degree centrality (DC) is the one of the most widely used 

centrality measures and intuitively understandable. The 

definition of the DC is the number of links that the node 

connects to other nodes. When considering the directed 

networks, two degree centralities can be defined “in-

degree centrality” and “out-degree centrality”. The in-

degree centrality is the number of links that come into the 

node, and the out-degree is the number of links that go out 

from the nodes. One of the famous facts relating to the 

degree centrality in complex networks is that the 

distribution of the number of each node shows the scale-

free feature [1]. And, it is well known that this feature is 

observed in the artificially designed networks created by 

the preferential attachment network formation algorithm 

[1].  

The eigenvector centrality (EVC) [15] is an index 

considering that a node connecting to influential nodes 

increases its influence. With respect to the DC, the DC 

only considers the influence from the surrounding nodes 

locating one-step away, but the EVC considers the effects 

from the other nodes in the entire network. Therefore, for 

the practical use, the EVC is believed to be more 

convenient to measure the relative influence of each node. 

However, the EVC is only usable for the mutually 

connecting and undirected network.  

Controlling the properties of the nodes with high centrality 

is a possible and effective approach to control the 

dynamics on network because the nodes with high 

centrality are comparatively influential to the entire 

network. Recently, studies about the application of the 

centrality measures for controlling diffusion dynamics on 

networks are reported by many researchers (e.g. [14]). For 

instance, Alpha-centrality (AC) [16] is applied to control 

the SIS diffusion model in networks [17, 18]. The AC is 

defined as follows as a vector notation, 

where, α is an arbitrary parameter, e is an all-one vector, 

and I is a unit matrix.  

In the SIS model, the infection probability vector,  ( ), at 

time t can be represented as below, 

where,  ( ) denotes the initial infection probability and M 

denotes the transition probability matrix which can be 

calculated as below, 

  =  (1  )   𝐀     (8) 

Then, utilizing by Tyler expansion, the accumulative 

infection probability on each node can be approximated 

with assuming infinite time as below, 

∑ ( )

 

   

= (                    

  ) ( )  (   ) 1 ( ) 

 (9) 

Then, considering that the parameter α is the effective 

infection ratio β/δ, and assumes that the initial infections 

randomly occur, which means  ( )   , the formula (9) 

can be formulated as follows, 

(   ) 1 ( ) =
1

 
(   𝐀) 1 ( )

 (   𝐀) 1      
(10) 

This analysis predicts that the Alpha-centrality on each 

node is proportional to the accumulative infection 

probability on each node. 

 ( ) =    1 ( ), (7) 

  = (   𝐀)
   , (6) 
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In addition to that, an important analysis on the AC is that, 

when α become close to 0, the value of AC on each node is 

approximated to the DC as shown below, 

      (   𝐀)
   =     

   
 (     𝐀     𝐀  

   𝐀        𝐀   )  (   𝐀)    
(11) 

The physical significance of this analysis that, when the 

effective infection ratio is small (when α   0), the DC is a 

critical criterion when selecting the nodes to immune.  

Furthermore, when α approaches to 1/λ1(A) from below, 

the AC can be approximated to the EVC as can be derived 

as follows, 

   
  (1   ( )) ⁄

(   𝐀)   

=     
  (1   ( )) ⁄

∑
1

1   𝜆 
    

    1 1
  

 

  1

= (∑  , 

 

  1

) 1, 

(12) 

where    denotes the eigenvector for the k
th

 eigenvalue 

and   ,  denotes the i
th

 element in the eigenvector   . 

Because each element in the principal eigenvector, the 

EVC of each node corresponds to the elements of  1, the 

AC can be approximated to the EVC when α   1/λ1(A). 

The physical insights of this analysis that, when the 

effective infection ratio approach to the critical point, the 

EVC can be used to identify the influential nodes for 

effective mitigating.  

However, if the effective infection ratio   is larger than the 

critical point  𝑐 , the formula (9) diverges, which means 

that the AC cannot be applied to the regime over  𝑐 . 

Therefore, the normalized Alpha-centrality (NAC) 

measure is proposed [18], which can be applied to the 

whole regime of  . The NAC for a given node n is 

calculated by dividing the AC on node n by the sum of the 

AC on every node as described below, 

5. Infection Diffusion Eigenvalue Centrality 

Based on the equation (4), we proposed a new centrality 

measure, the infection diffusion eigenvalue centrality 

(IDEC), which considers the influences from not only the 

largest eigenvalue and the principal eigenvector but also 

the other eigenvectors and eigenvalues. As we reported in 

our previous works [12], considering the non-largest 

eigenvalues and their corresponding eigenvectors is 

critical to analyse the diffusion dynamics in real networks, 

although the diffusion process has been approximately 

considered utilizing only the largest eigenvalue and the 

principal eigenvector.  

The IDEC is defined as follows, 

where   denotes the number of nodes in the network,   ,  
denotes the ith element of the eigenvector of the kth 

eigenvalue, and the norm ‖  ‖  denotes the sum of all 

elements of the kth eigenvector. 

To evaluate the performance of this new centrality 

measure, we compare the how the typical centrality 

measures (i.e. DC, EVC, NAC) and IDEC can predict the 

significance of infection on each node in the numerical 

simulation results. The numerical simulations consist of 

three processes as follows, 

1) Conducting the SIS diffusion simulations on 

several networks. 

2) Sorting the node-level simulation results (the 

number of infection on each node) as following 

the orders of significance of (i) the number of 

infection, (ii) DC, (iii) EVC, (iv) NAC, and (v) 

IDEC 

3) Calculating Spearman’s rank correlation 

coefficient between the sorted results of (i) and 

the results of (ii), (iii), (iv), and (v) respectively. 

Table 1 shows the comparison results of the computed 

Spearman’s rank correlation coefficient on 500-nodes 

Barabasi-Albert scale-free network (BA), 498-nodes 

Erdos-Renyi random network (RND), 500-nodes random 

regular network (RR), 379-nodes co-authorship network of 

network scientists (CNNS) [19, 20], and 419-nodes U.K. 

member of parliament Twitter network (UKMPTN) [21, 

22]. The simulations ware done as changing the Score 

which is the effective infection ratio normalized by the 

simulated critical point,  𝑐,   , of each network. In each 

simulation, 10% of the nodes in each network are 

randomly chosen as the initial infected node. And, we 

repeated 100-time steps simulations 100 times with the 

same settings, then the outputs were averaged.  

As can be seen in table 1, the proposed centrality, IDEC, 

shows better performance when the effective infection 

ratio is very small, which fit with the fact that we assume 

that the effective infection ratio is sufficiently small to 

obtain the equation (3). The insight which the IDEC is the 

best matrix for the small effective infection ratio provide 

with a good implication for effective infection prevention 

method because the individual targets to immune should 

be selected before outbreaks happen. Our simulation 

results for the other region of the effective infection ratio 

    ( ) =
   ( )

∑    ( )
 
  1

 (13) 

    ,  ∑   (     )   ‖  ‖

 

  1

,  (14) 
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show the NAC is the best choice to predict the vulnerable 

node on SIS model. Also, this comparison results indicate 

that the difference between independent network and 

modular network. RND and BA are the independent 

networks in which the entire network consists of only one 

network. On the contrary, the modular network in which 

the some densely connected sub networks sparsely 

interconnect each other, such as CNNS and UKPMTN, 

EVC shows poor predictability for all score, which means 

that we need to consider the all eigenvector and 

eigenvalues when we think the modular network that is the 

ubiquitous characteristics found in real networks. 

 

 

Table 1: Comparisons of rank correlation coefficient between the 

simulation results ordered by the number of infection and the results 

ordered by the several centralities (DC, EVC, NAC, and IDEC).  

Network Centrality 

Rank correlation coefficient  

for specific values of Score 

0.5 0.6 0.7 0.8 0.9 1 2 

RND  

N = 498 

DC 0.3843 0.5110 0.6483 0.6942 0.8172 0.8500 0.9574 

EVC 0.3727 0.4706 0.6300 0.7204 0.8600 0.9352 0.9170 

NAC 0.3976 0.5171 0.6655 0.7397 0.8798 0.9325 0.9838 

IDEC 0.3990 0.5232 0.6661 0.7342 0.8660 0.9110 0.9954 

BA 

N = 500 

DC 0.1824 0.2770 0.2663 0.3187 0.3458 0.3480 0.4466 

EVC 0.3028 0.4111 0.5833 0.7159 0.8671 0.9428 0.8746 

NAC 0.2899 0.4149 0.5846 0.7125 0.8705 0.9359 0.8856 

IDEC 0.2883 0.4349 0.5858 0.7033 0.8600 0.9234 0.9244 

CNNS 
N = 379 

DC 0.4643 0.5156 0.6034 0.5976 0.6214 0.6209 0.7988 

EVC 0.2666 0.2144 0.3855 0.5373 0.5412 0.6524 0.3897 

NAC 0.4727 0.5394 0.6818 0.7780 0.8563 0.8450 0.9560 

IDEC 0.4795 0.5269 0.6525 0.6884 0.7500 0.7511 0.9467 

UKMPTN 

N = 419 

DC 0.3796 0.5015 0.5933 0.6458 0.6578 0.6124 0.8653 

EVC 0.3040 0.3411 0.4010 0.5654 0.6627 0.7313 0.5455 

NAC 0.3669 0.5484 0.6785 0.7861 0.8506 0.8539 0.9663 

IDEC 0.3828 0.5468 0.6676 0.7581 0.8011 0.7929 0.9877 

 

6. Enhancement of Network Resilience using 

Centrality Measurement 

In this section, we show the simulation results when the 

recovery probability of each node is proportional to the 

significance of its centrality. In the real world context, 

there are some situations that can be considered that this 

recovery probability enforcement is suitably applicable, 

such as the improvement of the recovery probability 

against a specific disease, or restraining the rumor spread 

by the information control, and so on. The enforced 

recovery probability of each node is determined by the 

following rules. 

1) For a specific centrality measure, calculate the 

centrality in the all networks and finding a 

network that shows the highest centrality value. 

2) Dividing the centrality values on each node in the 

network identified in the step 1 by the largest 

centrality value. Then, computing the sum of the 

centrality of the network.  

3) The sum of the recovery probability in the step 2 

is distributed as following the relative 

significance of each centrality measure. 

4) The infection probability, β, for all nodes is 

determined by multiplying the average value of 

the recovery probability determined in the step 3 

and the effective infection ratio. 

5) Conducting the SIS diffusion simulation and 

calculating the averaged integrated number of 

infection until 100 time-steps, which is defined as 

the accumulative infection number, A, in the 

following formula, then comparing the integrated 

values to evaluating which centrality-based 

recovery enforcement strategy can reduce the 

number of infection, which can measure the 

performance of the centrality measures, 

 

where where  ( ) denotes the number of infected 

nodes over the whole network. 

Figure 1 shows the comparison results of the four recovery 

enforcement strategies on the two independent networks 

(RND and BA) and the two real-world modular networks 

(CNNS and UKMPTN). As indicated in this figure, for the 

all four networks, the recovery probability enforcement 

strategy based on IDEC shows the best performance 

  ∑ ( )

1  

   

, (15) 
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when   is comparatively small. In addition, the recovery 

probability enforcement strategy based on the eigenvector 

centrality does not demonstrate effective reduction of 

infections, especially in real networks, which support our 

expectation that only considering the largest eigenvalue 

and the principal eigenvalue is not sufficient to analyse the 

dynamics on real networks, and we need to consider the 

non-largest eigenvalues and the corresponding 

eigenvectors. 

 

 

 

 
 

 
 
 

 

 
Fig. 1 The comparison of the centrality-based recovery probability 
enforcement strategy, (a) for 500-nodes random network (RND), (b) for 

500-nodes Barabasi-Albert scale-free network (BA), (c) 379-nodes Co-

author network of network scientists (CNNS), and (d) 419-nodes U.K. 
member of parliament on Twitter network (UKMPTN). Each plot 

represents the value of the accumulative infection number (AIN, A) 

which denotes the accumulative number of infection until 100 time-steps 
over the network for the four networks as the function of effective 

infection ratio  .  

7. Conclusions 

In this paper, we proposed a new centrality measure, 

infection diffusion eigenvector centrality (IDEC), which 

derived from the analysis of the SIS model on networks 

from spectral point of view. IDEC considers all 

eigenvalues and corresponding eigenvectors, even though 

the previous analysis of the SIS diffusion model from the 

spectral point of view often considers only the largest 

eigenvalue and the principal eigenvector can approximate 

the property of the SIS diffusion dynamics. Then, our 

comparisons examination results that the IDEC shows 

high predictability when the effective infection ratio is 

below the critical point, which is the expected from the 

analytical framework. Also, we compared the simulation 

results when the recovery probability of each node 

increases as following the significance of each centrality 

measure. This recovery probability enforcement 

examination results that the recovery probability 

enforcement strategy using the IDEC is better to refrain 

the infection when the effective infection ration is 

comparatively small. In addition to that, one prominent 

insight of this work is that the eigenvector centrality 

poorly performs especially on the real networks, which is 

because, when analyzing the real networks, we must 

consider the effects from the non-largest eigenvalues and 

the corresponding eigenvectors as we precisely analyze in 

our previous work [12].  

As our future works, we will develop an analytical 

framework from the spectral point of view for SIR and 

SIRS model. Also, for more realistic scenarios on 

epidemic spread, we will use the dynamically changing 

human contact network. 
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