

Explicit Object-Oriented Program Representation for Effective

Software Maintenance

Bassey Isong

 Department of Computer Science, University of Venda

Thohoyandou, Limpopo, South Africa

bassey.isong@univen.ac.za

Abstract
Today, object-oriented (OO) technology is a de facto approach in

software development and several OO software applications are

presently in use. For these systems to remain useful, they have to

be effectively and efficiently maintained. As changes are both

important and risky, Change impact analysis (CIA) is used to

preserve the quality of the software system. OO software have

complex dependencies and change types that often affect their

maintenance in terms of ripple-effects identification or may

likely introduce some faults which are hard to detect. Existing

CIA proffers little or no clear information to represent the

software for effective change impact prediction and components’

fault-proneness is not considered. Consequently, changes made

where dependencies and fault-proneness are not understood may

have some undesirable effects elsewhere in the system or may

increase its risks to fail. Therefore, this paper proposes an

approach called OO Component Dependency Networks

(OOComDN) which explicitly represent the software and allow

its structural complexity to be quantified using complex

networks. The objective is to enhance static CIA and facilitate

program comprehension. To assess the effectiveness, a controlled

experiment was conducted using students’ project with respect to

maintenance duration and correctness. The results obtained were

significant, indicating OOComDN is practicable for impact

analysis.

Keywords: Impact Analysis, Software Change, Complex

Networks, Faults.

1. Introduction

Changes are an indispensable property of software which

plays a crucial role in their evolution. Software during

development or its life-time are subject to changes in order

to continue to remain useful and meets its operational

requirements. Factors that motivate software change on

existing systems include activities such as defects fixing,

new features addition to meet customers’ changing

requirements, environmental adaptation or internal code

quality enhancement [1]. Despite the benefits associated

with these activities, changes have possible high risks.

Regardless of the change size, they have the ability to

introduce unanticipated side-effects, errors elsewhere in

the system, degrade the quality of software or cause the

software to fail [2][3]. In particular, changes that are

carried out frequently can destroy the architectures of the

software and even increase source code and architecture

inconsistency. In real-life software maintenance, this

situation manifest especially, when the program

dependencies and components’ fault-proneness are

ignored. This goes with the fact that making changes to

software components while neglecting their dependencies

and fault-proneness may have some unexpected effects on

the quality of the later which may increase their risks to

fail [2][3]. The emanating risk during the change is a

function of the impact resulting from a given change

made.

As today software applications have grown more and more

in size and complexity, making these changes has become

recognized as a challenging task. To be successful in

performing changes, a good comprehension of the

component dependencies as well as their fault-proneness

probability is vital to avoid unintended effects in the

system [4]. In the sphere of software development today,

OO approach is overwhelmingly gaining momentum and

widespread use. OO approach has the benefits of

producing a clean, well-understood design characterized

by easier to understand, test, maintain and extend [5].

Thus, it is important that OO software systems have to be

effectively and efficiently maintained if they are to remain

useful. However, the acclaim benefits of the OO

technology do not on their own ensure quality, guard

against developer’s mistakes and prevent faults or failures.

OO approach introduces new concepts whose features

often affect its maintenance or increases its chances of

becoming faulty.

Software change impact analysis (CIA) is the technique

that is used as leverage. CIA tries to identify or estimate

the consequences of the proposed change impact from the

analysis of software product [4]. It is used to curb the risks

and costs associated with unidentified effects of changes.

Nevertheless, the complex relationships of OO features

frequently create difficult situation that adversely impedes

engineers’ ability to anticipate and detect changes’ ripple-

effects or potential faults in the system [6]. The ripple-

effects of a change or errors in one part of the system may

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

spread to other unchanged parts via the various complex

dependencies. As a result, the maintainer would spend

huge amount of time and efforts trying to locate the source

of the failing effect. Several CIA approaches exist in the

literature today such as static [7][8][9], dynamic

[3][10][11] or hybrid approaches [19] as well as fault

prediction models to predict the fault-proneness of high

risks components, especially for large software systems.

But these CIA approaches provides little or no information

on how to explicitly represent OO software for effective

comprehension and CIA. Additionally, faulty software

components are not taken into consideration during the

changes analysis. In this case, change impact and faults

predictions are disjointed activities during software

maintenance which make OO software modification more

complex.

In the light of this research gap, this paper therefore,

proposes and constructs an approach that will assist

software maintainers in performing the OO software

maintenance effectively. The approach will be effective in

the reduction of maintenance efforts and cost in terms of

change impact and faults prediction. To this end, we

propose the use of complex networks to build an

intermediate representation (IR) of an entire OO program

which will explicitly reveals its implicit dependencies and

allow for quantitative measurement of the software

quality. The objective is to improve static CIA approach.

By effectively representing OO program using the IR

called OO component dependency networks

(OOComDN), it would go a long way to facilitating

program comprehension and CIA while preserving the

quality of the software with less cost in terms of time and

effort. The approach was evaluated using students’ project

in terms of maintenance duration and correctness and the

results obtained were promising, indicating the IR is

efficient for CIA.

The rest of this paper is organized as follows: Section 2

gives the background information, Section 3 discusses the

IR of the OO program and Section 4 is proposed

OOComDN. Section 5 is the empirical evaluation of the

IR, Section 6 is the study discussion, Section 7 is the

validity threat and Section 8 is the conclusion.

2. Background Information

Change to a software system is inevitable and software

maintainers would be making changes in the dark if they

don’t understand what, how and where of the changes to

be performed. CIA is an important technique that is used

to determine the consequences of such software changes

and preserve its quality. As an important property of

software, changes are necessary either in the requirements,

design or source codes. Several CIA approaches have been

proposed, developed and used in the literature [7]. Among

these approaches is the static CIA approach which

constructs a static representation of the software and

reveals the structural dependencies from the source code

[5].

OO software systems are composed of separate but linking

entities known as components. They include the fields,

methods/functions, and classes which are usually the

components that are used for analysis. With the

inevitability of change, when a change is made on one

component, it may propagate to other components not

changed. The task of CIA technique in this case, is to find

the initial change component and other components that

are thought to be truly affected by the change. OO

program on the other hand, have complex dependencies

that often make it cumbersome to identify the impact of

the change or faults during their maintenance [5].The

drivers of this complexity are the OO features such as

encapsulation, inheritance, polymorphism and dynamic

binding which distinguishes it from structured-oriented

paradigm [5]. (See Figure 1) Thus, a change in one

component will inevitably cause undesirable effects in

other components in a manner not anticipated.

Fig. 1 OO program component dependencies

Existing static CIA approaches in the literature proffer

little or no information on how to explicitly represent OO

software for effective program comprehension and CIA

process. This is because failing to understand all impacts

of a change through component dependencies before the

actual change implementation can have undesirable effects

on the system. In addition, existing CIA approaches and

software fault prediction activities are performed

separately. No known approaches in this regard exist.

Hence failing to take faults propagation into consideration

during changes may results in same undesirable effect. The

knowledge of component’s fault-proneness probability is

vital during CIA because, it is well-known that OO classes

are not faults or failures free [6][12][13][14][15][16]. A

fault is a defect in a software system that may cause an

executable product to fail. Therefore, the intuition is that if

a fault-prone class is changed without fixing the existing

faults, it may increase the efforts and costs of the

OBJECT
CLASS C1

CLASS
FIELD

CLASS
METHOD

OBJECT
CLASS C2

Use

Member

Member

Use

Use

Inherit,

Use,

Implement

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

maintenance or lead to software failure. The early

identification of the high-risk components will allow

mitigating actions to be employed before change can be

implemented. Understanding the different dependencies

and source code change types of the OO software system

as well as the probability of class fault-proneness will go a

long way to reducing the effect of costly software failure.

As one of the benefits of this study, the teaching and

learning of Software Engineering at the undergraduate

level have long been centered on coding. This is evident in

several students’ course projects both published and

unpublished. Software maintenance is one area where

much attention has not been paid as students are not taught

how to maintain a system. Today OO approach is

becoming the mainstream in software development and

several OO software applications exist and in use.

Undergraduate students therefore, must be taught how to

maintain a system alongside its coding. This will better

equip the students with the necessary core competencies

and technical skills expected of every software engineer

when they graduate. They are the future software

developers who may be involved in the maintenance of

OO software systems. Hence, a simple approach that will

assist them to understand OO program and carryout

maintenance tasks successfully is indispensable. That is,

an approach that will effectively represent OO program by

exposing their structural characteristics which can aid

comprehension and facilitate CIA. In this paper, we

propose the use of IR of OO software using the complex

networks. Details of the proposed approach are given in

subsequent sections.

3. Proposed Intermediate Representation

This section discusses the proposed IR of OO program that

will assist software maintainers in facilitating program

understanding and CIA. The approach is based on the

work by [7] and [17]. In this paper, we used the idea of

complex networks to model OO software system’s

structure.

3.1 Complex Networks in Software Systems

Complex networks in recent decades have gained

increasing momentum and software system is not an

exception due to its topological structure [17][18].

Software systems can be modeled as complex networks

where software components are represented as nodes and

their interactions as edges. The representation is possible

due to the design structure of OO software which is better

explained by its structural properties in terms of

components and the relationships. The components are the

fields, methods, classes and packages, while their

interactions are the different dependencies that exist

between these components.

The importance of the IR is that today software systems

especially OO program has exponentially grown in size

and complexity with structure becoming more and more

complicated such that a change or fault in one component

often requires changes/faults to several other parts in a

way not anticipated. Consequently, the complex structure

posed by the complex relationships makes it difficult to

quantify the overall quality of the final software product.

In this case, the better the structure of the software, the

lesser would the cost of the development be. Therefore,

analyzing OO software system’s structure using complex

network will help the maintainer to achieve the following

objectives:

A. To visualize software components and their

complex dependencies. This will help the

maintainer to have an understanding of which

components will be impacted by a change when a

change request is considered on a component.

Consequently, change will be limited to few

components as possible.

B. To quantitatively analyze the quality of the entire

OO program structure. This involves measuring

the degree of the components in terms of

coupling and their fault propagation from one

component to another. By analyzing the software

structure quantitatively would help the maintainer

to know in advance, the quality of the system and

the risk posed by the propagation of faults from

one component to the other. This is vital to allow

a maintainer to take mitigating actions where

necessary in order to reduce the cost of software

failure when changes are implemented.

4. OO Component Dependency Networks

The IR proposed in this paper is called the OOComDN. It

is used to represent components and their relationships in

OO software system. In the OOComDN, the OO

components are the nodes and the interaction or

relationships between every pair of the components is a

directed “weighted” edge with an edge type indicating the

probability that a change or fault in one component may

propagate to the other component. OOComDN is

considered in two perspectives: change and fault diffusion

networks.

4.1 Change Diffusion Networks

In change diffusion network (CDN), OO software system

is represented using a “weighted” directed graph, G where

components are the vertices and the dependencies among

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

the components are the edges when taking both the

semantics and syntactic structure into consideration. CDN

is used to represent the software components and their

relationships for onward maintenance task, perhaps, CIA.

It explicitly represents the structure of the OO program

source code that will assists the software maintainer in

quantifying which components will be truly affected by a

change. In other words, the representation is basically used

to discover the evolution mechanism of the OO software

system.

4.1.1 Dependencies Types

In this study, we identified four types of dependencies,

D
Type

 that exist in OO program: inheritance (H), usage

(U), invocation (V), and membership (M) [2][7]. They are

determining factor of change ripple-effects. Their details

are discussed as follows: Given an OO program with two

classes C1 and C2, methods m1 and m2 and fields, f, the

dependencies that exist are as follows:

 Inheritance (H): H exists if: C2 inherits from C1,

C1 inherits from C2 or C2 indirectly inherits from

C1.

 Usage (U): U exist if: C1 uses C2, C1 aggregates

or contains C2, or C1 aggregates or contains C2 by

value or reference.

 Invocation (V): V is the type of dependencies

between methods, m of a class. If m1 and m2 are

methods in a class, therefore, V exists if: m1 calls

m2 or m1 overrides m2 and so on.

 Membership (M): M is one that exists between

the class and its member. That is, dependencies

between the class, methods and fields.

These dependencies are the non-numeric weight assigned

to the edges of the OOComDN-1 and constitutes the links

by which a change or fault transmits from one component

to other once a change is consider on a specific

component. Based on the CDN and the D
Type

 the following

definition of OOComDN is considered: OOComDN-1.

Definition 1: [OOComDN -1]

Given an OO program, P let G = <(N,D
E
), D

Type
 >

represent OOComDN given by:

OOComDN-1 = < (N, D
E
), D

Type
 >

Where N = NPk + NC + NM + NF are the nodes and D
E
 =

N×N×D
Type

 represents the set of various edges with

dependencies types, D
Type

. D
Type

 is called the weight of the

graph and NPk, NC, NM

and NF represent the set of

packages, classes, member methods and fields

respectively. Each component is represented by only one

node and the weighted-directed edge between two nodes

indicates that a component is a member of the class or

uses, invokes or inherits the other components.

4.1.2 Typical Illustration

A typical illustration of the OOComDN is shown in Figure

3 using the program, P written in Java of Figure 2. The

various shapes used to represent each component in the

OOComDN-1 are also shown in Figure 3.

Fig. 2 Sample program

Fig. 3 OOComDN of the sample program in Figure 2

Figure 3 shows the representation of the OO program

captured in Figure 2. In the OOComDN-1 A, B, C and D

are the classes in P while H, V, M and U are the

d
A()

M2()

M1()

M M

M

M

U V

B()

q
a

M6()

M4()

M3()

M
M

M

M

U

U

V

M5()

C()

B k

M

M

M

U

H H

D()
M

M

M

U

V

U

V

V

A C

DB

U

M

U

V

H

MEMBERSHIP

INVOCATION

INHERITANCE

USAGE

Component

Dependencies

FIELD

METHOD

CLASS

P1 P2

PACKAGE

package p2;

import p1.*;

public class C {

 public C(){};

 private p1.B k;

public void M5()

{ k.M4(); }}

class D extends C {

public D() {};

private String q;

public void M6()

{ q="Boy!";

B j ; j.M4();

A p; p.M1(); }}

package p1;

public class A {

public A(){};

private int d;

public void M1()

{ d=2; }

public int M2(int x)

{ M1();

x= d + 10;

return x; }}

public class B extends

A {

public B() {};

private int a;

public void M3()

{ a=5; }

public int M4(int b)

{ M3();

int c = a+b+10;

return c; }}

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

dependencies types. In this way, if a component says D

uses or inherits or invokes a class say A, there will be an

edge emanating from the node D to node A. Furthermore,

the multiplicities of these dependencies are very important

and are taken into account depending on the type of

change to be performed on a given component. The weight

of each directed edge will indicate the probability that a

change in one component say A, may or may not impact

other component, D.

4.2 Degree of OOComDN-1

After the construction of the OO program as OOComDN-

1, the first thing is to compute its degree, Z. Z of a node in

OOComDN-1 is the number of dependencies a component

has against other components connected to it or it is

connected to. Two types of Z exist: in-degree and the out-

degree. The computation of the Z is used to identify the

degree of coupling of each component in the program as

well as the structural complexity of the software at the

class level. (see Figure 4) This is important as it gives an

insight into how components are related to one another in

terms of coupling and what need to be done to accomplish

a change, when a change is consider in one component.

Degree computation is done at the class level which is

done after pruning OOComDN-1 leaving only classes and

their dependencies types as shown in Figure 4. The

definitions for Z are stated as follows:

Fig. 4 Class level OOComDN-1

Definition 2: [Degree of OOComDN-1]

Given, OOComDN-1, < (N, D
E
), D

Type
>, with an

adjacency matrix Aij, the degree of a vertex, Zi, we defined

the out-degree of an OO program component as the

number of edges or connections originating from that

component. It is given by |Z
out

(ni)| which is the sum of

the i
th

 column of the Aji.

 ∑

 ……………………………………….....1

On the other hand, the in-degree of an OO software

component, ni is the total number of edges or connections

onto that node and it is given by |Z
in

(ni)| which is the sum

of the i
th

 row of the Aij.

 ∑

 ………………….………………..……....2

Z
tot

(ni) is the total number of directed edges into and out

of the node, ni ЄN. It is simply the sum of

 .

 …………………………...3

In other words, Z
in

(ni) indicates the number of classes that

has dependency on class nj ЄN and Z
out

(ni) the number of

classes on which class ni ЄN depends on. The in-degree

and out-degree for the program shown in Figure 2 is

captured in Table 1.

Table 1: In-degree and Out-degree in OOComDN-1 of Figure 4

Node, ni

A (B,A) = 1, (D,A) = 1 - 2

B (C,B) = 1, (D,B) = 1 (B,A) = 1 3

C (D,C) = 1 (C,B) = 1 2

D (D,A) = 1, (D,B) = 1
(D,C) = 1

- 3

As shown in Table 1, for instance, class A has one in-

degree for the ordered paired (B,A) and (D,A) and no out-

degree. In addition, Z
tot

 is a measure of the overall

complexity of the program. The presentation clearly shows

the nature of coupling in A which will assist a maintainer

to know in advance, the complexity of the class before

performing CIA. As complex relationships among OO

software components often lead to structural complexity of

the software system as well as cognitive complexity, being

similar to Chidamber-Kemerer’s (CK) Coupling between

Object Classes (CBO) metric [12][16], the degree of a

class, Z in a software network would actually shows the

degree to which each class depends on other classes. In

this paper, Z is used to measure the degree of coupling in a

small or medium sized system.

4.3 Fault Diffusion Networks

Fault diffusion network (FDN) is similar to the one

proposed by [17] and is represented just as CDN. As used

in the OOComDN, the only difference is that the

semantics of the relationship is neglected and every

relationship has the same importance. FDN is used to

characterize the risks a component poses on others due to

the direct or indirect dependency existing between them.

The rationale is that, though it is believed that a fault in

one component will propagate to other components that

depend on it, the case is not always true with respect to

OO software systems. The intuition is that, OO program

class is composed of several fields and methods and a

class is considered faulty if it has at least one fault

A C

B D

H HU

U

U

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

emanating from either itself or its members. In this case,

members of another class that depends on such faulty class

do not all connect to the faulty member directly or

indirectly. Hence, the propagation of fault from one

component to another is based on probability. The

definition is stated as follows:

Definition 3: [OOComDN-2]

In FDN, the nodes represent the classes and a class is

represented by only one node in the entire OOComDN-2.

Interactions between classes are represented by directed

numerically weighted edges.

Thus, OOComDN-2 can be described as:

OOComDN-2 = <NC, DC, Pb>

Where NC is the set of classes, DC is the set of edges

linking one class to another and Pb is the probability that a

fault in a class will propagate to another. The interaction is

based on the principle that, if members in class, say D use

class members of A, B, an edge will originate from the

node of the member in class D to the node in A, B and vice

versa. For simplicity, in FDN, only the existence of

dependency is considered while the D
Type

 is ignored.

Additionally, the multiplicity of the dependencies

regardless of how many times a class depend on another

class and so on is ignored. Also, the numerical weight on

each DC in a class is the same which represents the

probability that a fault in class will impact or spread to

other classes they connects to. (see Figure 5).

Definition 4: [Fault Propagation Probability]

Let P be an OO program having class i and class j, where

class j depends on class i. We therefore, define the

probability of fault propagating from class i to class j as

Pb (i,j). In this paper, we defined it as follows:

 ….………………………………….4

Where CM(i,j) is the set of members in class j which

faults will propagate to the members in class i, that they

are directly or indirectly linked to, thereby rendering the

class faulty. On the other hand, MTj is the total number of

class members present in the class, j. They are shown as

follows:

CM(D,A) = {M1()} and MTA = {d, A(), M1(), M2()}

CM(D,B) = {M4()} and MTB = {a, B(), M3(), M4()}

Fig. 5 Class fault propagation probability

As shown above, Figure 5 captured the fault propagation

probability in a class. The edges of all members in a class

are denoted by 1. It indicates the probability that a member

of the class will be faulty due to the dependency it has

with a faulty member. That is, every member of a class has

the same probability of being faulty if a member they

depend on is faulty. However, for inter-class dependency,

the case is not always true. Each class has its own

probability value which is based on the number of

members in that class that depends on the faulty class. For

instance, as shown in Figure 5, it is clear that class D

depends on class A and B as follows:

 (D.M6(),A) = {M1()} = D.M6() → A.M1()

 (D.M6(),B) = {M4()} =D.M6() → B.M4()

Therefore,

 = 0.25, and

 = 0.25

The above computation is based on equation 4 where

Pb(D, A) = Pb (D, B) = 0.25, 25%. This denotes that, since

M6() in class D depends on class A and B, the probability

that a fault in class A or B will impact class D is only

25%. For inheritance dependency type, the probability will

not be computed because members in the classes are not

connected directly. With this computation, the higher the

probability, the higher the risk of the fault propagation will

be. In this case, a smaller risk value signifies that a fault in

the measured component poses no serious impact on the

other components and modification can be performed

hitch-free. This idea stemmed from the fact that, if a class

in which other classes depend on is faulty and was not

detected before a change not meant to fix it is made, there

is the probability that the faults may propagate to other

components connected to it. Therefore, it is important that

during CIA, the risks propagation probability of all the

affected classes identified as impact set should be

d
A()

M2()

M1()

1 1

1

1

1 V

B()

q
a

M6()

M4()

M3()

1
1

1

1

1

1

V

H

D()
1

1

1

1

0.25

0.25

A

DB

1

P1 P2

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

118

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

measured before actual changes are made. The approach

will assist the maintainer to quantitatively measure the

structural quality of the software through the assessment of

the potential risks. The essence is to allow the maintainer

know which components affected by a change proposal

will have a higher risk probability of transmitting faults to

its neighbors during the course of maintenance. It would in

turn allow mitigating actions to be focused on those high

risk components in time to avoid the cost of software

failure.

5. Empirical Evaluation

In this section, we present the results of the empirical

evaluation performed to assess the effectiveness and

significance of the IR for facilitating CIA. In this study,

only the OOComDN-1 was evaluated. Details are

discussed in subsequent sections.

5.1 Study Setting, Subject, and Tasks

In this study, we performed a controlled experiment using

small-size systems developed by students in one of their

semester’s projects. The subjects were only undergraduate

Computer Science students of our department and the

study was in fulfillment of the Software Engineering

curriculum with a focus on software maintenance

techniques. The subjects in their third year of study were

divided into nine groups (A, B, C, D, E, F, G, H and I) of

five students each and each student had comparable levels

of education and experience in software development, java

programming in particular. For each team selected, strict

measures were taken to blend the teams with the required

skills needed. In order to be effective in carrying out

maintenance, subjects had a week of theoretical

knowledge of software maintenance, the basic knowledge

needed for CIA using IR of OO program and others. The

goal of the controlled experiment was to demonstrate

whether a good and effective representation of OO

program can increase the understandability of the

maintainer to perform modification tasks successfully. In

this case, to be able to maintain and change a system

efficiently and correctly, the maintainer has to have an in-

depth understanding of the systems’ structure (source

code). By efficiency, we mean the minimum time taken to

carry out the change while correctness is the intended

functionality and less side-effects of the change.

The characteristics of the system collected from the

subjects are Team A, D, F, H, and I system’s had 5 class

each while team B, C, E, and G 6 classes each. The

maintenance task was to perform modification task on

other team’s system. There were four maintenance tasks

the subjects performed during the course of the

experiment: MTask1 - one class change, MTask2 - one

class change, MTask3 - two methods change, and MTask4

- one field change. The changes were based on the

different change types applicable for OO program [3]. An

overview of the experiment design is captured in Figure 6.

Fig. 6 Experimental design overview

5.2 Experimental Variables

During the course of the experiment, the variables that

were of importance at each phase of the maintenance task

are the change duration, program correctness, the number

of errors the change introduced and the task phase. The

change duration (CD) was computed by finding the

difference between the starting and finishing time of the

modification task. The program correctness (PC) was

computed by grading each team with a grade between 0-

100% based the outcome of the tasks and the correct

program execution while the number of errors (NoE) was

computed by counting the errors introduce by the

modification task after the changes were made via

recompiling the program. In this case, NoE were computed

based on the number of lines affected as indicated on the

development IDE used. These were all performed by the

supervisor and the team members. Lastly, for the

TaskPhase, two variables were important: modification

without IR or modification with IR (MTask1- MTask4),

(See Figure 6).

Due to the programming skills of the subjects, we first

assessed the each team’s program for actual amount of

time and complexity of classes that would be impacted by

each change and the approximate time required to carry

out the tasks. This was necessary in order to quantify the

degree of difficulty of the change tasks. However, the

results we obtained from the experiment put forward that

this approach was adequately appropriate in this regard.

5.3 Hypotheses

In this study, hypotheses were tested in the experiment to

assess the significance of the IR to CIA during the

maintenance task. Thus, the null hypotheses of the

experiment were as follows:

Impact of TaskPhase on Change Duration (CD):

Experiment

MTask 1 MTask 2 MTask 3 MTask N

MTask 1 MTask 2 MTask 3 MTask N

Modification_without_IR

Modification_with_ IR

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

119

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

H01: The time taken to perform maintenance task is

equal for modification without IR and modification with

IR.

Impact of TaskPhase on Number of Error Introduced:

H02: The number of error introduced in a changed

program is equal for modification without IR and

modification with IR.

Impact of TaskPhase on Program_Correctness (PC):

H03: The correctness of the program after maintenance

task is the same for both modification without IR and

modification with IR.

For the effect on duration (CD), the test was to evaluate if

using IR constitutes a time wastage or not on the part of

the maintainer while the effect on correctness (PC) would

be to evaluate if using IR during maintenance contributes

to program understanding or not. In this case, if

correctness is equal for both, then it is not useful for CIA.

However, if the program correctness is more for

modification with IR than modification without IR, then it

is useful for CIA and facilitates program comprehension.

Furthermore, for NoE, the task would be to test if the

number of errors introduced after modification is equal in

both case or not. If it is lower with the TaskPhase,

modification with IR, then it is useful, otherwise not useful

for CIA.

5.4 Statistical Technique and Specification

In this study, we used the paired-sample T-test called the

dependent T-test statistical technique to test the hypotheses

stated in Section 5.3. The choice of the dependent T-test

statistical technique stems from the fact that it is used to

analyze paired scores to determine if a difference exists

between them. It compares measurements from the same

participants by using two different measurement

approaches. It proffers a flexible approach for measuring

the effectiveness of two different techniques using the

same participants. Modification_without_IR and

Modification_with_IR are the measurement techniques that

were used in this study.

All the variables specified were normally distributed. We

used the Shapiro-Wilk Test since it is appropriate for small

sample sizes, say less than 50 (< 50). There were no

transformations performed on the variables since they have

no potential negative effect. The model specification is

captured in Table 2. In the event that the underlying

assumptions of the models are not violated, the related null

hypothesis will be rejected if the presence of a significant

model term corresponds to p≤0.05.

Table 2: Statistical technique specification

Variable

Distribution

Model Term

Use of Model Term

Duration normal TaskPhase Test H01

Number of

Errors
normal

TaskPhase Test H02

Program

Correctness
normal

TaskPhase Test H03

5.5 Result Analysis

The main results obtained based on the task phases:

modification without IR and modification with IR for

MTask1 – Mtask4 are visualized in Figure 7 and Figure 8

respectively. The change duration, % program correctness

and a count of error are shown on the Y-axis, while the

project group is shown on the X-axis. With the results,

there are some clear indications that TaskPhase affect the

CD, PC and NoE in the two phases. For instance, a small

amount of time was utilized to implement a change in the

program when IR was used in phase II than when IR was

not used in phase I. In the same vein, the correctness of the

program was better when IR was utilized during the

modification task and the same result is applicable to NoE

introduced in both phases. However, for practical

importance, it is essential to see if these differences are

significant. To achieve this, the above stated hypotheses

were tested.

Fig. 7 Effect of TaskPhase on modification without IR

As specified earlier, the paired-sample T-test was

employed to test the hypotheses. The results obtained from

the hypotheses testing with respect to the CD, PC and NoE

for the modification tasks (MTask1-MTask4) in both

phases are captured in Table 3. The results indicate that

TaskPhase does have a significant effect on the program

correctness, change duration and number of errors

introduced. The level of significance was p ≤ 0.05.

PC(%); 29

NoE; 19

CD(Min);
56

0

10

20

30

40

50

60

A B C D E F G H I

C
D

, P
C

 a
n

d
 N

o
E

Modification_without_IR

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

120

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 8 Effects of TaskPhase on modification with IR

The summary of the results of the hypotheses tests is as

follows:

(1) For the impact of TaskPhase on CD, we rejected H01

since p-value ≈ 0.00 ≤ 0.05.

(2) For the impact of NoE introduced, we rejected H02

since p-value ≈ 0.00 ≤ 0.05, and lastly,

(3) For the impact of TaskPhase on PC, we rejected H03

since p-value ≈ 0.00 ≤ 0.05.

In conclusion, at the significance level of α = 0.05, there

exists enough evidence that there is a huge difference in

the mean CD, PC and NoE of both phases of the of

maintenance tasks (modification without IR and

modification with IR). These results therefore, demonstrate

that the IR of OO program is effective and useful in the

facilitation of CIA.

Table 3: Dependent T-test results

Paired variable T DF P-value Sig.

CD - CDII -8.541 8 0.000

NoE - NoEII 10.509 8 0.000

PC - PCII 5.646 8 0.000

6. Discussions

The results obtained from the experiment seem very

interesting in terms of duration, program correctness and

the number errors introduce after change were

implemented for phase II. As shown in Figure 7 and 8

respectively, it is obvious that the time taken by the

subjects to perform the maintenance task in phase II (36

min maximum) were significantly smaller than the

modification duration of phase I (56 min maximum).

Accordingly, the correctness of the maintenance task

(correct solutions) was significantly higher for phase II

(56% minimum) than for the phase I (51% minimum).

Moreover, the number of errors introduced after the

changes were made was significantly lower for phase II (6

maximum) when the modification with IR was used as

opposed to modification without IR (19 minimum).

The results further suggest the effectiveness of the IR for

CIA. With these results, it is quite clear that using the IR

of OO program during CIA will actually reduce the time

needed to make changes by effectively identifying

components affected by a change and their dependencies,

the correctness of the solution and the number of errors

that will be introduced after the change. Accordingly, the

interpretation of these results requires care. This is

because, though we took good time to blend each team

with skillful and experienced subjects, the experiment

actually did not took care of such experiences and skills in

term of the team. In this case, the level of skill and

experience of each team differs and may affect the

maintenance task in terms of efficiency and

comprehension. Factor that could also affects the results

are the system’s structural properties such as coupling,

cohesion and inheritance. Though, inheritances were not

utilized in the subject’s programs, it is true that a good

design involves having low coupling and high cohesion in

a system in order for maintenance to be effective.

Unfortunately, the reverse: high coupling and low

cohesion is known to have negative effect on change

propagation across systems. Consequently, much time

could be spent by each team in order to understand and

carry out changes correctly. Moreover, while some errors

still remained in most of the team’s program after changes

were made could be as a result of either undiscovered

indirect impacts resulting from the system’s structural

properties or the programming experience of the subjects.

7. Threats to Validity

Experiments are always associated with potential risks that

can affect the validity of results. In this section, we discuss

the important possible threats to the validity of the

controlled experiment and what has been done to reduce

them.

7.1 Internal Validity

Internal validity threats are effects that can affect the

independent variable (TaskPhase) with respect to

causality, without the knowledge of the researcher’s in an

experiment [20]. They pose a threat to the conclusion

about a possible causal relationship between treatment and

PC(%); 51

NoE; 6

CD(Min);
36

0

20

40

60

80

100

A B C D E F G H I

C
D

II
, P

C
II

 a
n

d
 N

o
EI

I

Modification_with_IR

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

121

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

outcome. In this study, the experiment was performed in

two phases and in the same location and setting. Thus, lack

of randomization of the TaskPhase assignment could result

in skill differences between the participating teams, which

in turn would render the results biased. However, this

potential threat was addressed by assigning each subject to

a team based on their previous performances to ensure that

each team was balanced. In addition, since the same

participants were involved in both phases, the dependent t-

test proved most suitable for testing the stated hypotheses.

7.2 Construct Validity

Construct validity deals with the degree to which

conclusions are justified from the perspective of the

observed participants, study settings, and dependent and

independent variables. These threats are as follows:

7.2.1 Measuring Program Correctness, Change Duration

and Number of Faults

In the experiment, three simple measures were used as

dependent variables: PC, CD and NoE. The variable PC, a

measure of the program correctness, was a mark given

which shows whether the subjects obtained a correct

solution after change tasks MTask1 – 4 were carried out.

To show the quality of the marks given, an independent

expert was consulted. The programs were thoroughly

tested and the program code was also inspected. This was

to ensure that the program measure was appropriate. The

CD measured the time spent to perform maintenance tasks

correctly for the modification tasks MTask1 – 4. Though

time was measured as a difference between the finish time

and start time, we believe it might be affected by factors

such as calling the attention of the supervisor and so on,

during the experiment. However, we took every step to

reduce this threat. Also, NoE is a count of the number of

faults found on the IDE after implementing the changes for

modification tasks MTask1 – 4. During compilation,

necessary steps were taken to count the actual faults that

originated. In addition, though PC, CD and NoE are the

important pointers of program maintainability that reflect

maintenance cost, however, several other maintainability

dimensions were not covered such as faults severity, the

design quality of the program and so on. To eliminate

these threats, only quality programs were selected for the

experiment.

7.2.2 Task Phase

The division of the experiment into phases;

modification_without_IR and modification_with_IR could

be another important threat to the construct validity in the

experiment. In this case, the trend was to determine

whether the variable TaskPhase has satisfactory construct

validity. In the context of the experiment, to check the

construct validity we quantified beforehand the difficulty

of modification tasks in terms of amount of class each

program had and their complexity and the time needed to

implement the changes.

7.3 External Validity

The threats to external validity concern conditions that

limit generalization of the results obtained in the

experiment [20][21]. Such threats are mainly from the

participants, the settings and the nature of the system

maintained.

7.3.1 Application and Tasks

The systems used for the experiment were very small in

size, maximum of two packages, 6 classes which are not

up to thousand lines of code (KLOC). Thus they were

small-sized applications compared with industrial OO

program systems. In addition, the modification tasks were

relatively simple, small in size and time. However,

program characterized in this manner poses limitation to

controlled experiments and is dependent on the research

question being asked as well as to the extent to which the

results are supported by theory [20][21]. In the

experiment, we showed a clear impact of TaskPhase,

notwithstanding the small size of the applications and

modification tasks. Its generalization to larger applications

and tasks can be made with the support of existing

program comprehension research theories. Additionally, it

is possible that the task phases and their effects on project

team’s performance would be different for larger systems

and complex maintenance tasks since larger systems will

often require larger cognitive complexity. Also, if the

experiment had lasted longer the results may have been

different.

7.3.2 Subject Sample

All the participants used in the experiment were only

undergraduate students of computer science and thus fell

in the class of “novices” or as “advanced beginners” as

stipulated by [22]. Similar results might also be obtained

by subjects having a similar background. Due to the small

sample size of about 45 students in nine teams involved,

caution is needed when interpreting the results. Also

participants varied because of their individual

programming skills and experience. However, due to the

blending of the teams with skillful and experienced

subjects, it is believed the presence of differences had no

significant impact on the results obtained.

8. Conclusions

In this paper, we have proposed an approach to represent

OO program. The approach will assist in the facilitation of

both program comprehension and onward software

maintenance, CIA in particular. The OOComDN

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

122

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

constructed is quite simple, easy and do not analyze deeply

into the methods’ body. It clearly reveals the complex

dependencies in the program. Unlike other dependency

graphs, OOComDN is not complex and the components

involved are countable. As a benefit, OOComDN can be

used to teach beginners such as undergraduate student to

understand the structure of OO software and perform CIA

effectively during maintenance tasks. In addition, it can be

used to quantify the structural complexity of the system

especially for small or medium-size systems without

having to use OO design metrics. To assess the

significance of the IR, an empirical evaluation of the

approach was conducted and the results obtained were

significant for CIA in terms of maintenance effort

reduction of effort and costs. Therefore, this paper

concludes that the IR is effective and practicable for

impact analysis of OO software systems.

The limitation of the study is that, small sized systems

were used in the evaluation of the IR. In addition, the

participants involved were students and are not as skillful

as professionals. We therefore, believe it will affect the

results reported in this paper. However, necessary

measures as discussed in the study validity threats were

taken ensure quality in the experiments and the results

presented are valid. The future work of this study will be

on the implementation of the approach in order to

automate the approach.

References
[1] Bohner, S. A. and Amold, R. S., "Software Change Impact

Analysis," IEEE Computer Society Tutorial, IEEE Computer
Society Press,1996

[2] Abdi, M. K., Lounis, H. and Sahraoui, H. “Analyzing change
impact in object-oriented systems” Proceedinds of 32nd Euromicro
Conference on Software Engineering and Advanced, 2006, pp.8

[3] Law, J., Rothermel, G., “Whole program path-based dynamic
impact analysis”, The Intl Conf. on Software Engineering, 2003.

[4] Bohner, S. A., "A Graph Traceability Approach to Software Change

Impact Analysis," Ph.D. Dissertation George Mason University,
Fairfax, VA, 1995

[5] Lee, M., Offutt, A.J. and. Alexander, R. T. “Algorithmic analysis of
the impacts of changes to object-oriented software. Proceedings of
the Technology of Object-Oriented Languages and Systems
(TOOLS 00). Washington, DC, USA: IEEE Computer Society, pp.
61-70, 2000

[6] Fenton, N., Ohlsson, N. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software
Engineering, Vol. 26 no. 8, pp.797-814, 2000

[7] Sun, X., Li, B., Tao, C., Wen, W. and Zhang, S. “Change Impact

Analysis Based on a Taxonomy of Change Types” 2010 IEEE

Proceedings of 34th Annual Computer Software and Applications
Conference (COMPSAC 2010), 2010. pp.373-82

[8] Badri, L. Badri, M and Yves, S. D. Supporting predictive change

impact analysis: a control call graph based technique. In
Proceedings of Asia-Pacific Software Engineering Conference,

2005

[9] Zhang, S., Gu, Z., Lin, Y. and Zhao, J. J. Change impact analysis

for AspectJ programs. In Proceedings of International Conference
on Software Maintenance, pages 87 – 96, 2008

[10] Law, J. and Rothermel, G. Incremental dynamic impact analysis for
evolving software systems. In Proceedings of International

Symposium on Software Reliability Engineering, 2003

[11] Apiwattanapong, T., Orso, A. and Harrold, M. J. Efficient and
precise dynamic impact analysis using execute after sequences. In

Proceedings of International Conference on Software Engineering,

pages 432 – 441, 2005.

[12] Emam, K.E., Melo, W.L., Machado, J.C.: “The prediction of faulty
classes using object-oriented design metrics”. Journal of Systems
and Software, No.56, pp. 63-75, 2001

[13] Malhotra, R., Kaur, A. and Singh, Y. Empirical validation of object-
oriented metrics for predicting FP at different severity levels using
support vector machines. International Journal System Assurrance
Engineering Management. No.1, vol. 3, pp. 269–281, 2010.

[14] Rathore, S.S. and Gupta, A. Validating the Effectiveness of Object-
Oriented Metrics over Multiple Releases for Predicting FP.
Proceedings of 19th Asia-Pacific Software Engineering Conference,
IEEE. pp.350-355, 2012

[15] Zhou, Y., Xu, B. and Leung, H. On the ability of complexity
metrics to predict fault-prone classes in object-oriented systems.
The Journal of Systems and Software No. 83, pp. 660–674, 2010

[16] Isong, B.E. and Ekabua, O.O. “A Systematic Review of the
Empirical Validation of Object-oriented Metrics towards Fault-
proneness Prediction”, International Journal of Software
Engineering and Knowledge Engineering (IJSEKE) World
Scientific Publishing Company December, 2013. Vol. 23, No.10,
pp. 1513–1540

[17] Pan, W.F., Li B, Ma Y.T. et al: Measuring structural quality of

object-oriented software via bug propagation analysis on weighted

software networks. Journal of Computer Science and Technology,
25(6): 1202–1213 Nov. 2010.

[18] Liu, J., Lu, J., He, K. and Li, B.: Characterizing the structural
quality of general Complex software networks. International

Journal of Bifurcation and Chaos, Vol. 18, No. 2 (2008) 605–613.

[19] Oliveira, M. et al: “The Hybrid Technique for Object-Oriented
Software Change Impact, Analysis” Proceedings of the 14th

European Conference on Software Maintenance and Reengineering

(CSMR 2010), IEEE Press, 2010, pp.252-255

[20] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and
Wesslén, A. Experimentation in Software Engineering: An
Introduction. Norwell, MA, USA: Kluwer Academic Publishers,
2000

[21] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W.,
Hoaglin, D.C., El Emam, K., Rosenberg, J. “Preliminary guidelines
for empirical research in software engineering”. IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp. 721–734, 2002

[22] Mayrhauser, A.V. and Vans, A.M. Program comprehension during
software maintenance and evolution. Computer vol. 28, no. 8,
pp.44–55, 1995

Bassey Isong received B.Sc degree in Computer Science

from the University of Calabar, Nigeria in 2004 and M.Sc. degree
in both Computer Science and Software Engineering from
Blekinge Institute of Technology, Sweden in 2008 and 2010
respectively. Presently, he is a PhD candidate of Computer
Science, North-West University, South Africa. Since 2010, he has
being a faculty member in the University of Venda, South Africa
and a lecturer of Computer Science and Information Systems. His
research interests include Requirements Engineering, Software
Evolution Information Security, Software Testing, and Mobile
Computing.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 4, No.10 , July 2014
ISSN : 2322-5157
www.ACSIJ.org

123

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

