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Abstract 
Compilers typically use either a top-down or a bottom-up strate-

gy for parsing as well as semantic evaluation. Both strategies 

have advantages and disadvantages: bottom-up parsing supports 

LR(k) grammars but is limited to S- or LR-attribution while top-

down parsing is restricted to LL(k) grammars but supports L-

attribution. The goal of the work described herein was to com-

bine the advantages of both strategies. The result is the compiler 

generator BoB, mainly a preprocessor for Flex and Bison (mod-

ern versions of Lex and Yacc). BoB processes compiler descrip-

tions written in Cocol4BoB which supports L-attributed 

LALR(1) grammars and generates input files for Flex and Bison. 

Compilers generated by the BoB-Flex&Bison toolchain use 

bottom-up parsing and top-down semantic evaluation. So devel-

opers do not have to struggle with LL(1) conflicts and can use 

inherited as well as synthesized attributes in semantic actions. 

Another benefit of BoB is its simple yet powerful compiler de-

scription language. 

Keywords: Bottom-Up Parsing, Top-Down Semantic Evalua-

tion, Attributed Grammars, Compilers and Compiler Genera-

tors. 

1. Introduction 

The first compilers (e.g., for Fortran [2]) were “hand-

crafted” without extensive formal specifications and the 

usage of special tools. Later, compilers were created from 

attributed grammars (ATGs) [12] for defining the syntax 

as well as the semantics of the source languages, still 

writing parsers by hand using recursive descent [1] as a 

simple but efficient method for parsing. The develop-

ments in the last decades improved this error-prone man-

ual transformation, as tools have been developed which 

support the compiler writers by generating (main parts of) 

their compilers from ATGs. These tools are called com-

piler compilers or compiler generators. These terms are 

misleading because they imply that full compilers can be 

created, but usually these tools create only some important 

parts of the frontend of a compiler, typically scanners 

and/or parsers (for syntax analysis and evaluation of se-

mantics). 

 

Over the years, mainly two categories of compiler genera-

tors have been created [19]: 

1. Tools that generate compilers which use a top-down 

strategy (e.g., recursive descent) for parsing and se-

mantic evaluation, where parsing is restricted to LL(k) 

grammars but semantic evaluation supports inherited, 

transitional and derived attributes (so called L-

attributed grammars). 

2. Tools that generate compilers which use a bottom-up 

strategy for parsing and semantic evaluation, where 

parsing supports LR(k) grammars but semantic evalu-

ation cannot deal with inherited and transitional at-

tributes (so called S- or LR-attributed grammars). 

As mentioned above, both strategies have advantages and 

disadvantages. Therefore, compiler developers typically 

have to enter into compromise. 

 

In 1986, Mössenböck described in [14] a new compiler 

generator called Smart which offered an interesting alter-

native to this situation which overcomes the limitations 

described above: compilers generated by Smart use a top-

down parser and evaluate semantics in a bottom-up man-

ner. But Smart was written in and for Modula-2 [23] and 

today this language is buried in oblivion (e.g., see [21]), 

thus Smart has not been used on a wide scale. 

2. Problem Definition and Aim 

Apart from the complicated syntax of their input lan-

guages for describing compilers in form of ATGs, current 

compiler generators still have significant disadvantages: 

either they do not support LR(k) grammars or they do not 

support inherited and transitional attributes in semantic 

actions (as used in L-attributed grammars). Therefore, 

compiler writers still have to choose between bottom-up 
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and top-down parsers with corresponding semantic evalu-

ators and have to deal with their drawbacks. 

 

The aim for solving this problem, was not to develop a 

completely new compiler generator (as Mössenböck did 

with Smart) but to clever reuse existing compiler genera-

tors, an idea Katwik already presented in [11] as “a poor 

man’s approach for parsing attributed grammars”. In 

more detail, to aim was to create special kind of prepro-

cessor called BoB (an acronym for Best of Both strategies) 

for Flex [16] and Bison [8] which are modern versions of 

the well-known and widely used tools Lex [13] and Yacc 

[10]. The resulting toolchain, using BoB prior to Flex and 

Bison (BoB-Flex&Bison) should be able to generate form 

L-attributed LR(k) grammars (supporting inherited, tran-

sitional and derived attributes for semantic actions) the 

main parts of the frontend for compilers in C++ [20]. So 

the overall aim of this work was to combine the best strat-

egies for parsing and semantic analysis: the powerful bot-

tom-up parsing with the powerful top-down semantic 

evaluation. 

 

Another goal was related to the input language: BoB 

should use syntax for its input language (necessary for the 

definition of ATGs to describe compilers) which is delib-

erately not derived from the cryptic input languages for 

Flex and Bison but inspired by the simple and readable 

syntax of Cocol-2, the input language for Coco-2 [6]. 

Therefore, Bob’s input language is called Coco language 

for BoB or Cocol4BoB for short. Cocol4BoB should allow 

the definition of LALR(1) grammars with semantic ac-

tions in C++ that obey the restrictions of L-attribution so 

that BoB can translate theses ATGs into valid input files 

for Flex and Bison, which are then used to generate the 

final source files (in C++) for the main compilers parts: 

scanner, parser and semantic evaluator. The resulting 

compilers use deterministic finite automata for scanning, 

bottom-up parsing and top-down semantic evaluation. For 

the implementation of the semantic evaluator the idea of 

Mössenböck incorporated in Smart have been taken up 

again. 

3. State of the Art 

This chapter gives a short overview of only those tools 

and the concepts which are necessary for the design and 

the implementation of BoB. 

3.1 Compiler Generators 

Bison [8] is a modern version of the well-known and 

widely used parser generator Yacc [10]. Bison from S-

attributed LALR(1) grammars generates bottom-up 

parsers. Bison-generated parsers need scanners for read-

ing the input stream and tokenizing the characters. Flex is 

a modern version of the well-known and widely used 

scanner generator Lex [13]. Flex generates from regular 

expressions scanners which are based on deterministic 

finite automata (DFA). The combination of (F)Lex and 

Bison/Yacc is widely used. All these tools are in and for C 

or C++. 

 

Coco-2 [6] and Coco/R [15] are compiler generators 

based on the predecessors Alex and Coco [17]. Both tools 

accept as input L-attributed LL(1) grammars and mainly 

generate top-down parsers. The most important difference 

between both tools lies in the top-down parsing technolo-

gy: 

 Parsers generated by Coco-2 use an interpreter for 

grammar code (G-code, a special kind of byte code de-

fined for Coco and extended for Coco-2) which sup-

ports flexible error recovery [7]. 

 Parsers generated by Coco/R use the classic recursive 

descent method which makes them highly efficient. 

Besides parsers, Coco-2 and Coco/R can generate scan-

ners based on DFA. Both tools are available in and for 

several programming languages (including C and C++). 

 

The compiler generator Smart [14] uses bottom-up pars-

ing and top-down semantic evaluation in the generated 

parsers. Smart is written in and for Modula-2 [23]. Now-

adays, this programming language has no large spread 

[21] any more, thus Smart has not been used on a wide 

scale. 

3.2 Compiler Description Languages 

Compiler generators typically define their own compiler 

description languages. Usually, some kind of regular ex-

pressions is used to define the lexical structure (set of to-

kens) of the input language for the compilers to be gener-

ated and some kind of Backus-Naur Form (BNF) [3] is 

used for the definition of the syntax of the input language. 

Examples are the compiler description languages for the 

scanner and parser generators Flex and Bison. 

 

Coco-2 [6] takes a different approach: its compiler de-

scription language Cocol-2 (Coco language) is used for 

the description of both parts (scanner and parser), so Ex-

tended Backus-Naur Form (EBNF) [9, 22] can be used for 

the definition of the lexical structure (set of tokens) as 

well as for the syntax of the source languages of the com-

pilers to be generated. This leads to consistent, shorter 

and more readable descriptions within a single document, 

avoiding duplicate descriptions for the scanner and parser 
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in different notations and decreasing the probability of 

errors. 

4. Design 

This chapter gives an overview of the solution approach 

taken for BoB, lists the requirements for and presents a 

sketch of its input language Cocol4Bob and finally ex-

plains the Bob’s architecture as well as the architecture of 

compilers generated by BoB. 

4.1 Solution Approach 

Figure 1 presents a comparison of the power of the LL(k) 

versus the LR(k) syntax analysis strategies. The question 

visualized in Figure 1 is, which sequence α has to be cho-

sen for the nonterminal A. Comparing the information 

available for answering this question (“known: ….”) – in 

the left side for top-down analysis and in the right side for 

bottom-up analysis – makes it evident, that top-down 

analysis has less information during processing the stream 

of tokens as bottom-up analysis, which additionally has 

all the tokens of α which already have been pushed onto 

the stack of the PDA. Simply put: more information al-

lows better decisions, so LR(k) is more powerful than 

LL(k). 

 

 

Fig. 1: Power – LL(k) versus LR(k) [5]. 

Another important aspect is that semantic evaluation dur-

ing top-down analysis has access to semantic attributes 

that have already been computed, visualized by one big 

green area in the syntax tree in the left side of Figure 1, 

whereas semantic evaluation during bottom-up analysis 

can only process synthesized attributes, visualized by sev-

eral small green areas in the syntax tree in the right side 

of Figure 1. 

 

Aho et al. in [1] pose the following key question “How 

can we handle L-attributed syntax driven definitions on 

LR grammars?” Their answer is: “Build the parse tree 

first and then perform the translation.” 

 

This leads to the central design decision for BoB (the 

same as taken for Smart): first of all, syntactic analysis 

must be performed in a bottom-up manner and afterwards, 

semantic analysis can take place in a top-down manner. 

 

Figure 2 shows a general overview of the solution ap-

proach. BoB processes files with compiler descriptions 

(extension .ATG) written in Cocol4BoB using some pre-

defined text files, so called frames (extension .frm), con-

taining templates for the files to be generated. BoB gener-

ates input files for Flex (extension .l) and Bison (exten-

sion .yy), which are necessary to generate the scanners 

and parsers. This intermediate step (Flex and Bison) has 

the advantage that BoB does not have to generate complex 

scanners and complex bottom-up parsers itself, as Flex 

and Bison already provide well-tested ones. Additionally, 

BoB delivers semantic analyzers (in C++), which are 

compatible with the scanners and parsers generated by 

Flex and Bison. 

 

The BoB-Flex&Bison toolchain generates compilers 

which process the input files in two phases: 

1. lexical analysis and bottom-up syntax analysis and 

2. top-down semantic evaluation. 

But these two phases must be strictly separated. For data 

exchange, appropriate data structures are used, that store 

the necessary lexical and syntactical data. In case of lexi-

cal or syntactical errors in phase 1, the second phase can 

and must be omitted, of course. 

 

 

Fig. 2: General overview of the solution approach. 
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Another important aspect of Bob’s design is that BoB 

itself is generated using Flex and Bison. The first version 

of BoB has been generated from hand-written .l and .yy 

files by Flex and Bison. Afterwards, an ATG for BoB in 

Cocol4BoB has been defined, which allows a full boot-

strap: generating a new version of BoB with an older one, 

e.g., with the first version of BoB. If yet another pass of 

this bootstrapping process (e.g., generating the third ver-

sion using the second one) still yields a functional version 

of BoB, it is shown, that all components of BoB are cor-

rect. 

4.2 Requirements for and Sketch of Cocol4BoB 

An important design decision concerns the definition of 

an adequate input language for BoB: a new compiler de-

scription language was developed that meets the following 

main requirements: 

 User friendliness: high readability (e.g., with mean-

ingful keywords) and only a few syntactical constructs 

for the whole compiler description (e.g., usage of 

EBNF for both, the description of the scanner and the 

parser, instead of regular expressions for the scanner 

and primitive BNF for the parser). 

 Single source principle: only one input file should be 

necessary, which ensures consistency of the compiler 

description and avoids multiple declarations (with dif-

ferent notations). 

 

According to these requirements, Cocol-2, the proven 

input language for Coco-2 [6], could be used as basis. But 

Cocol-2 could not be used without minor changes and a 

few extensions, because Cocol-2 uses symbols from the 

target language C++ (e.g., the operators << and >>) and 

BoB needs additional information which has to be incor-

porated into the language. Moreover, Flex and Bison do 

not support all concepts available in Cocol-2. Therefore, 

BoB uses a modified (e.g., <| and |> instead of << and >>) 

and extended (e.g., keyword SEMDECL or the RECOVER 

BY clause) version of Cocol-2 called Cocol for Bob or 

Cocol4BoB for short. 

4.3 Architecture of BoB 

The package and class diagrams in Figure 3 show the 

general architecture of Bob’s object-oriented implementa-

tion in C++. BoB consists of the two static libraries BoB-

Template and BoBCommon and the executable called BoB: 

 The library BoBTemplate contains functionality for 

the template mechanism used to generate files for 

scanners, parsers and semantic evaluators from corre-

sponding templates provided in frame files (cf. Figure 

2). 

 The library BoBCommon contains the common parts 

of BoB (as well as for BoB-generated compilers) nec-

essary for error handling in class Errors and some 

utilities in class Utils. 

 The executable BoB consist of the class BoB which 

contains the main entry point. This class is responsible 

for handling user input/output and for initiating the 

scanner and the parser as well as the semantic evalua-

tor. All other classes in this executable are generated 

by Flex and Bison from corresponding input files (ei-

ther hand-written .l and .yy files or files generated by 

BoB from the BoB ATG by bootstrapping). The two 

classes BoBScanner and BoBParser obviously contain 

the generated scanner and the generated parser. 

 

The library BoBTemplate is the centerpiece of BoB. It 

contains the all the algorithms used for the transformation 

from Bob’s input in Cocol4BoB files to output files which 

subsequently serve as input files for Flex and Bison. The 

class Template is the main part of this library. This class 

provides an efficient key-value store which holds map-

pings for placeholders (keys) used in templates stored in 

frame files to target content (values) for the generated 

files. Based on this key-value store, Template provides 

functionality to fill a frame which contains the corre-

sponding placeholders. The class TemplateTokens pro-

vides the definitions of the used frames and the used 

placeholders. 

 

The classes ScannerTemplate, ParserTemplate and 

SemEvalTemplate differ in the particular target compo-

nent. They contain special transformation methods, which 

take as input the data provided by the scanner and parser. 

These methods create the desired output files using the 

associated key-value store. Finally, after the whole input 

processing, the output files are generated by filling the 

frames. 
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Fig. 3: Architecture of BoB. 

4.4 Architecture of Compilers generated by BoB 

The package and class diagrams in Figure 4 show the 

architecture of compilers generated by BoB (also compare 

this to Figure 3). The X in the diagrams stands for the 

name of the generated compiler (whose input language 

typically is called X as well). The main class X can either 

be derived from the provided frame file Main.frm (by cop-

ying Main.frm to X.cpp and applying some adaptations) 

or be implemented from scratch by the developer. The 

library BoBCommon is identical to the library used by 

BoB (cf. Figure 3) as described in the previous section. It 

contains error handling and some utility functionality. 

 

The classes XParser, XScanner, Location, Position and 

Stack are generated by the BoB-Flex&Bison toolchain 

from an input file called X.ATG written in Cocol4BoB. 

These classes have exactly the same functionality as the 

corresponding classes within BoB (cf. Figure 3). The new 

class XSemEval (generated by BoB directly) contains the 

semantic evaluator. This class provides intermediate data 

structures, which at runtime will be filled by the scanner 

as well as the parser, and it contains all the semantic ac-

tions, which BoB copied from the input in X.ATG into 

this class. (This is a main difference in comparison to 

Smart, which uses special semantic code.) The semantic 

evaluation will be initiated by the main class X. 

 

 

Fig. 4: Architecture of compilers generated by BoB. 

5. Implementation Aspects (for parser genera-

tion only) 

BoB gets as input an ATG in Cocol4BoB, which describes 

the (main parts of the) compiler to be generated. BoB ex-

tracts the relevant information for the scanner, the parser 

as well as the semantic evaluator and uses a template 

mechanism to fill in the predefined frames. Figure 5 

shows the relevant parts of the input file and the overall 

structure of the generated output files. It is apparent, that 

Flex and Bison use the information of the keywords, to-

kens and token classes corporately. Nevertheless, to avoid 

that the ATG has to be read and processed twice, the out-

put frames are filled concurrently (within a single pass). 
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Fig. 5: Transformation of an ATG for language/compiler X 

in Cocol4BoB to input for Flex (X.l) and Bison (X.yy) as well as 

the semantic evaluator (XSem.cpp). 

5.1 Grammar Rules – EBNF to BNF 

The grammar rules in the ATG specify the syntactic struc-

ture that must be met by the input of the generated com-

pilers. In Cocol4BoB these grammar rules may be defined 

using EBNF. But the generated rules in the target file (.y 

for Bison) have to be in BNF. Therefore, a transformation 

from EBNF to BNF is required. Mössenböck in [14] de-

scribes a method, which replaces the EBNF constructs for 

grouping (…), option […] and repetition {…} with artifi-

cial nonterminal symbols and corresponding BNF rules. 

 

Table 1 demonstrates by use of simple examples, that 

there are (at least) two variants for applying these trans-

formations. The difference between the two variants is, 

that 

 variant 1 uses ε (empty sequence) rules whereas 

 variant 2 uses additional alternatives. 

So variant 1 leads to shorter rules and is therefore pre-

ferred. Unfortunately, the resulting ε alternatives also 

have a downside: in certain situations they lead to LR(1) 

conflicts (detected later on by Bison). As these conflicts 

can easily be resolved by hand, BoB nevertheless uses 

variant 1, because of the advantage of much shorter rules 

in realistic, more complex examples. 

Tab. 1: Transformation of EBNF to BNF (based on [14]) 

 

5.2 Semantic Evaluator 

The semantic evaluator uses two data structures, contain-

ing 

1. the lexical data (not the complete sequence of tokens 

but the values for token classes only, these values are 

provided by the scanner) and 

2. the reduction sequence (defining the structure of the 

syntax tree, provided by the parser). 

The main functional part of the semantic evaluator is 

comprised by the collection of the semantic actions copied 

form the ATG into semantic methods. 

 

In Cocol4BoB there is only one kind of element which 

can provide lexical data: token classes (e.g., for numbers). 

Token classes represent terminal symbols with associated 

lexical data. Figure 6 (a) defines a simple grammar which 

consists of non-terminal symbols (in upper-case letters) 

and terminal symbols (tokens in lower-case letters). The 

terminal symbols have associated attributes (simple values, 

val for short), which provide lexical data for the semantic 

evaluator. These lexical values are needed by the semantic 

evaluator in the order of their occurrence in the input file. 

Figure 6 (b), as an example, shows the syntax tree for the 

input sequence bdac. The lexical data for this sequence is 
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stored in a queue shown in Figure 6 (c), a first-in-first-out 

(FIFO) data structure (e.g., the number 1423 for the first 

element b of the sequence). 

 

 

Fig. 6: Rules (a), syntax tree (b) and lexical data (c) based on [14]. 

To perform the semantic evaluation in top-down manner, 

the reduction sequence has to be captured during the bot-

tom-up syntax analysis. The basic idea for this approach 

was first presented by Mössenböck in [14], Schmeiser and 

Barnard in [18] present a similar idea. BoB uses 

Mössenböck’s idea and adds some modifications to meet 

the requirements of the semantic evaluator. While the 

reduction sequence defines a tree-based structure, Bob’s 

implementation uses a linear data structure for its repre-

sentation, a double-ended queue (dequeue, the sequential 

STL [20] container std::deque). This linear data structure 

has two advantages over a tree-structured one (like the 

associative STL container std::set): 

1. memory allocation for such a linear data structure is 

more efficient, as only few but large blocks of memory 

must be allocated and 

2. in total, a deque needs less memory than a tree. 

 

 

Fig. 7: Rules (a), syntax tree (b) and red. sequence (c) based on [14]. 

Figure 7 shows for an example the reduction sequence. 

An entry in the reduction sequence represents a rule in the 

grammar. To accomplish this, each rule in the grammar is 

associated with a number starting with 1. The number 0 

has a special meaning: it represents a node with no sons, 

such nodes are usually used to exit loops. The reduction 

sequence is built by special semantic actions added to the 

rules of the generated parser. Because rules have a differ-

ent number of non-terminals, nodes have a different num-

ber of sons. Therefore, it is necessary, to save the number 

of sons for each rule/node. This information is calculated 

by BoB during the creation of the compiler. 

 

There is another problem with the reduction sequence 

described so far: Within a bottom-up parser, left recursion 

is preferred over right recursion, as left recursion saves 

space in the parser’s stack. Therefore, BoB uses left recur-

sion for transforming EBNF repetition {...} to BNF, see 

Figure 8 (a). But the reduction sequence created by left 

recursion, see Figure 8 (b), is different from the one creat-

ed by right recursion, see Figure 8 (c). For the semantic 

evaluator, it is important, that the “loop reduction num-

ber” and the reduction numbers contained within the loop, 

are evaluated successively, because otherwise the pro-

cessing order of the reduction numbers is disturbed. The 

correct order is guaranteed only by a reduction sequence 

created by right recursion, see Figure 8 (d). Therefore, a 

transformation from left to right recursion (only within 

loops) is required. 

 

 

Fig. 8: Transformation of repetition from EBNF to BNF with left and right 

rec. (a), red. sequ. for loop created by left rec. (b) and by right rec. (c), 

processing of the red. sequ. created by left and right rec. – red. sequ. by left 

rec. is not processable by top-down semantic methods (d). 

As shown in Figure 9, this transformation is divided into 

three steps: In the first step, all subsequent loop calls are 

added to a temporary buffer. All other nodes within the 
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loop are added directly to the resulting reduction sequence. 

When the loop terminates, the next two steps are per-

formed. In step 2, the first entry in the buffer is added to 

the reduction sequence. And finally, in step 3, the last 

elements in the buffer are added in reverse order to the 

reduction sequence. 

 

 

Fig. 9: Transformation of the red. sequ. for the example in Fig. 8 from left to 

right recursion. 

 

For each grammar rule, BoB creates one semantic method 

which holds and executes all the semantic actions of this 

rule. The grammar rule for the root non-terminal (the first 

rule in a Cocol4BoB ATG) provides the main method for 

the semantic evaluation process. This method is called 

when the scanning and parsing of the input is finished. 

The structure of semantic methods is similar to recogni-

tion functions created for a compiler using the method of 

recursive descent [1]. The difference is that no lexical and 

syntactical actions are performed, as these have already 

been executed during the analysis phase. The following 

code snippet in Cocol4BoB shows an example EBNF 

grammar rule with the relevant parts for the semantic 

method: 

 
A<||> = 

  LOCAL<||> 
  PRE  <||> 
  POST <||> 
  a<||> SEM<||> 
  B<||> SEM<||>   
| ( b<||>  )      
| [ C<||>  ]      
| { c<||>  
  | d<||>  }      

. 

 

The numbers  –  represent the reduction numbers for 

the resulting BNF grammar rules. And the numbers  – 

 represent the relevant data which is extracted from the 

grammar rules for the creation of the semantic method 

(see code snippet in C++ below). The following list ex-

plains the data used: 

 Formal parameter list of semantic method. 

 Local semantic declarations. 

 Semantic action interleaved at the start of the method. 

 Semantic action interleaved at the end of the method. 

 Semantic action – before, after or between symbols. 

 Actual parameter list to get the lexical data. 

 Actual parameter list for calls of semantic methods. 

 

The generated semantic method basically contains a 

switch statement to select the different alternatives. The 

control flow is defined by the reduction sequence. Within 

the switch condition, a call to the method NextRedNr de-

livers the next reduction number and selects the next al-

ternative. Within an alternative, following components 

can occur: 

 For each terminal class, a call to a GETxAttr method 

is inserted, this method delivers the captured lexical 

data. 

 For each non-terminal symbol, a call to the associated 

semantic method is inserted. 

 The semantic actions are copied directly from the 

grammar. 

 A grouping construct (…) in EBNF is implemented by 

a switch statement. 

 An option construct […] in EBNF is again imple-

mented with a switch statement and has an additional 

ε alternative. 

 The repetition {…} construct in EBNF is implement-

ed like the option construct. Additionally, the con-

struct is surrounded by a while statement, which ena-

bles repetition (without recursive calls). The ε alterna-

tive is used as exit point from the loop. 

 

As can be seen for the artificial rules (grouping, option 

and repetition), no separate semantic methods are created. 

These constructs are implemented as embedded state-

ments which act like separate methods. This has the ad-

vantage, that there are no scope problems with semantic 

variables. The code snippet in C++ below shows the se-

mantic method generated from the grammar rule A shown 

above: 

 
void A() { 

    
  bool done = false; 
  switch (NextRedNr()) { 
    case : 
      GETaAttr(); /*SEM*/  /*SEM*/ 
      B();        /*SEM*/  /*SEM*/ 
      break; 
    case : 
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      switch (NextRedNr()) { 
        case : 
          GETbAttr(); 
          break; 
      } // switch 
      break; 
    case : 
      switch (NextRedNr()) { 
        case : 
          break; 
        case : 
          C(); 
          break; 
      } // switch 
      break; 
    case : 
      while (!done) { 
        switch (NextRedNr()) { 
          case : 
            done = true; 
            break; 
          case : 
            GETcAttr(); 
            break; 
          case : 
            GETdAttr(); 
            break; 
        } // switch 
      } // while 
      break; 
  } // switch 
   

} // A 

6. Evaluation 

The new compiler generator toolchain BoB-Flex&Bison 

combines the advantages of the simple input language for 

Coco-2, the powerful bottom-up syntax analysis of Bison 

and the powerful top-down semantic analysis concepts of 

Smart and Coco-2. With the implementation of BoB pre-

sented in this paper, the goals (see chapter 2) were 

reached and the requirements (see section 4.2) were met. 

 

To assess especially the non-functional quality aspects of 

BoB, a comparison with existing compiler generators is 

necessary. Hence, the pros and cons of the (generated) 

compilers in terms of usability, capability and perfor-

mance are compared. 

6.1 Usability 

The usability of a compiler generator heavily depends on 

the compiler description language, since this language is 

the “user interface” for a compiler generator. Coco-2 uses 

Cocol-2, which was designed for simplicity and usability. 

This is achieved primarily through the use of a single 

input file, meaningful keywords and the use of EBNF for 

both, the description of the scanner as well as the parser. 

 

On the other hand, Flex and Bison use separate files for 

the description of the scanner and the parser. The scanner 

is described by regular expressions, while the parser is 

described by BNF rules. This results in the disadvantage 

that duplicate declarations are necessary in different nota-

tions, which can lead to inconsistency. Moreover, BNF is 

less expressive than EBNF used by Cocol-2. 

 

BoB uses a modified and extended version of Cocol-2 

called Cocol4BoB. This language includes adjustments to 

the target language C++ and to the compiler generators 

Flex and Bison. Thus, it can be stated that Cocol4BoB 

was built on an already established language and provides 

all its advantages. 

 

Another aspect concerning the usability of BoB is the 

length of the toolchain: Since BoB is an additional com-

ponent, it increases the complexity. This problem can be 

solved with automation by appropriate batch/shell scripts 

or by using a build tool like CMake (see www.cmake.org). 

6.2 Capability 

The capability of a compiler generator is defined by the 

power of the ATGs and the kind of supported attributes in 

semantic actions. Coco-2 supports LL(1) grammars only. 

LL(1) grammars are usually sufficient, but there are lan-

guages that cannot be described with this class of gram-

mars. But Coco-2 supports powerful L attribution. Thus, 

inherited and synthesized attributes are allowed within 

semantic actions. 

 

In contrast to Coco-2, Bison can handle LALR(1) gram-

mars. LALR(1) grammars are a superset of LL(1) gram-

mars and can therefore describe a much larger class of 

languages. On the other hand, Bison only supports the S 

attribution or a kind of LR attribution using global varia-

bles. 

 

So, the presented compiler generators have their strengths 

and weaknesses regarding to their power in parsing and 

evaluation of semantics. BoB has set out to combine the 

strengths of them. Therefore, BoB supports L-attributed 

LALR(1) grammars. In this respect, BoB is superior to 

the other compiler generators mentioned here. Additional-

ly, its relatively simple input language Cocol4BoB lowers 

the initial hurdles for aspiring compiler developers. 

6.3 Performance 

The advantages of BoB are not for free. A downside of 

BoB is the minor performance during creation of the 

compilers. But the main drawback is the performance of 
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the generated compilers, which is significantly worse than 

those generated with Coco-2 or Flex and Bison. 

 

The generation of compilers with BoB takes up to 20 % 

more time in comparison with Coco-2 as well as with Flex 

and Bison. Moreover and most important, compilers gen-

erated by Flex and Bison are up to six times faster, com-

pilers generated by Coco-2 are up to 30 % faster than 

those generated by BoB. Until now, no optimizations with 

respect to the runtime of BoB-generated compilers have 

been applied, this is left to further work, and we expect 

substantial speedups, so that BoB-generated compilers can 

cope with compilers generated by Coco-2, but the effi-

ciency of compilers generated by Flex and Bison is out of 

reach. 

 

Another aspect to be considered is memory usage: Where-

as compilers generated by Coco-2 or by Flex and Bison 

have constant memory complexity in the length of the 

input sequence, those generated by BoB have a linear 

complexity (mainly because of the reduction sequence). 

 

So compiler developers have to decide which characteris-

tics are more important for their applications. There are 

applications where the benefits of BoB exceed the draw-

backs in runtime and memory usage, especially for educa-

tional purposes. 

7. Conclusions 

In this paper we introduced the new compiler generator 

BoB, implemented as preprocessor for Flex and Bison. 

BoB not only combines the strengths of bottom-up syntax 

analysis (LR grammars) and top-down evaluation of se-

mantics (L-attribution), but it also has a simple to use and 

consistent input language for compiler description. 

 

Since BoB (using Flex and Bison) generates compilers in 

C++, it is restricted to this target language. Because BoB 

supports the powerful L-attributed LALR(1) grammars, 

the compiler developers have not to care for LL(1) con-

flicts and can use the intuitive inherited and synthesized 

attributes. Therefore, BoB is the ideal compiler generator 

toolchain for beginners. More details especially for im-

plementation aspects of scanner generation can be found 

in [4]. 

Appendix 

In the following, we present a small but complete example 

written in Cocol4BoB for the evaluation of simple arith-

metic expressions (basic operations on integers only), 

comparable to the task of a calculator (e.g., 17 + 4 = 21). 

 

The same example is used for Coco-2 in [6] and [7], but 

the notation there is Cocol-2 so Coco4BoB can be com-

pared to Cocol-2. 

 
COMPILER Calc 
 
CHARACTER SETS 
  Digit      = '0' .. '9'. 
  whiteSpace = CHR(9) + EOL IGNORE. 
    /*tab and end of line, blank ignored by default*/ 
 
COMMENTS 
  FROM '--' TO EOL.           --Ada comments 
  FROM '//' TO EOL.           //C++ comments 
  FROM '/*' TO '*/'.          /*C comments*/ 
  FROM '(*' TO '*)' NESTED.   (*Modula-2 comments*) 
 
TOKENS 
  '+'. '-'. 
  '*'. '/'. 
  '('. ')'. 
 
TOKEN CLASSES 
  number<|int& val|> = 
    digit { digit }   LEX <|val = atoi(tokenStr);|>. 
 
NONTERMINALS 
  Calc. 
  Expr<|int &e|>. 
  Term<|int &f|>. 
  Fact<|int &t|>. 
 
RULES 
Calc =                LOCAL<|int e = 0;|> 
  Expr<|e|>           SEM<|cout << " = " << e;|>. 
 
Expr<|int &e|> =      LOCAL<|int t = 0;|> 
  Term<|e|> 
  { '+' Term<|t|>     SEM<|e = e + t;|> 
  | '-' Term<|t|>     SEM<|e = e - t;|> 
  }. 
 
Term<|int &t|> =      LOCAL<|int f = 0;|> 
  Fact<|t|> 
  { '*' Fact<|f|>     SEM<|t = t * f;|> 
  | '/' Fact<|f|>     SEM<|t = t / f;|> 
  }. 
 
Fact<|int &f|> = 
  number<|f|> 
  | '(' Expr<|f|> ')'. 
 
END Calc. 
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