

BoB: Best of Both in Compiler Construction –

Bottom-up Parsing with Top-down Semantic Evaluation

Wolfgang Dichler
1
 and Heinz Dobler

2

1
 Software Engineering Department, University of Applied Sciences Upper Austria, Hagenberg, Austria

w.dichler@gmail.com

2
 Software Engineering Department, University of Applied Sciences Upper Austria, Hagenberg, Austria

heinz.dobler@fh-hagenberg.at

Abstract
Compilers typically use either a top-down or a bottom-up strate-

gy for parsing as well as semantic evaluation. Both strategies

have advantages and disadvantages: bottom-up parsing supports

LR(k) grammars but is limited to S- or LR-attribution while top-

down parsing is restricted to LL(k) grammars but supports L-

attribution. The goal of the work described herein was to com-

bine the advantages of both strategies. The result is the compiler

generator BoB, mainly a preprocessor for Flex and Bison (mod-

ern versions of Lex and Yacc). BoB processes compiler descrip-

tions written in Cocol4BoB which supports L-attributed

LALR(1) grammars and generates input files for Flex and Bison.

Compilers generated by the BoB-Flex&Bison toolchain use

bottom-up parsing and top-down semantic evaluation. So devel-

opers do not have to struggle with LL(1) conflicts and can use

inherited as well as synthesized attributes in semantic actions.

Another benefit of BoB is its simple yet powerful compiler de-

scription language.

Keywords: Bottom-Up Parsing, Top-Down Semantic Evalua-

tion, Attributed Grammars, Compilers and Compiler Genera-

tors.

1. Introduction

The first compilers (e.g., for Fortran [2]) were “hand-

crafted” without extensive formal specifications and the

usage of special tools. Later, compilers were created from

attributed grammars (ATGs) [12] for defining the syntax

as well as the semantics of the source languages, still

writing parsers by hand using recursive descent [1] as a

simple but efficient method for parsing. The develop-

ments in the last decades improved this error-prone man-

ual transformation, as tools have been developed which

support the compiler writers by generating (main parts of)

their compilers from ATGs. These tools are called com-

piler compilers or compiler generators. These terms are

misleading because they imply that full compilers can be

created, but usually these tools create only some important

parts of the frontend of a compiler, typically scanners

and/or parsers (for syntax analysis and evaluation of se-

mantics).

Over the years, mainly two categories of compiler genera-

tors have been created [19]:

1. Tools that generate compilers which use a top-down

strategy (e.g., recursive descent) for parsing and se-

mantic evaluation, where parsing is restricted to LL(k)

grammars but semantic evaluation supports inherited,

transitional and derived attributes (so called L-

attributed grammars).

2. Tools that generate compilers which use a bottom-up

strategy for parsing and semantic evaluation, where

parsing supports LR(k) grammars but semantic evalu-

ation cannot deal with inherited and transitional at-

tributes (so called S- or LR-attributed grammars).

As mentioned above, both strategies have advantages and

disadvantages. Therefore, compiler developers typically

have to enter into compromise.

In 1986, Mössenböck described in [14] a new compiler

generator called Smart which offered an interesting alter-

native to this situation which overcomes the limitations

described above: compilers generated by Smart use a top-

down parser and evaluate semantics in a bottom-up man-

ner. But Smart was written in and for Modula-2 [23] and

today this language is buried in oblivion (e.g., see [21]),

thus Smart has not been used on a wide scale.

2. Problem Definition and Aim

Apart from the complicated syntax of their input lan-

guages for describing compilers in form of ATGs, current

compiler generators still have significant disadvantages:

either they do not support LR(k) grammars or they do not

support inherited and transitional attributes in semantic

actions (as used in L-attributed grammars). Therefore,

compiler writers still have to choose between bottom-up

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

98

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

and top-down parsers with corresponding semantic evalu-

ators and have to deal with their drawbacks.

The aim for solving this problem, was not to develop a

completely new compiler generator (as Mössenböck did

with Smart) but to clever reuse existing compiler genera-

tors, an idea Katwik already presented in [11] as “a poor

man’s approach for parsing attributed grammars”. In

more detail, to aim was to create special kind of prepro-

cessor called BoB (an acronym for Best of Both strategies)

for Flex [16] and Bison [8] which are modern versions of

the well-known and widely used tools Lex [13] and Yacc

[10]. The resulting toolchain, using BoB prior to Flex and

Bison (BoB-Flex&Bison) should be able to generate form

L-attributed LR(k) grammars (supporting inherited, tran-

sitional and derived attributes for semantic actions) the

main parts of the frontend for compilers in C++ [20]. So

the overall aim of this work was to combine the best strat-

egies for parsing and semantic analysis: the powerful bot-

tom-up parsing with the powerful top-down semantic

evaluation.

Another goal was related to the input language: BoB

should use syntax for its input language (necessary for the

definition of ATGs to describe compilers) which is delib-

erately not derived from the cryptic input languages for

Flex and Bison but inspired by the simple and readable

syntax of Cocol-2, the input language for Coco-2 [6].

Therefore, Bob’s input language is called Coco language

for BoB or Cocol4BoB for short. Cocol4BoB should allow

the definition of LALR(1) grammars with semantic ac-

tions in C++ that obey the restrictions of L-attribution so

that BoB can translate theses ATGs into valid input files

for Flex and Bison, which are then used to generate the

final source files (in C++) for the main compilers parts:

scanner, parser and semantic evaluator. The resulting

compilers use deterministic finite automata for scanning,

bottom-up parsing and top-down semantic evaluation. For

the implementation of the semantic evaluator the idea of

Mössenböck incorporated in Smart have been taken up

again.

3. State of the Art

This chapter gives a short overview of only those tools

and the concepts which are necessary for the design and

the implementation of BoB.

3.1 Compiler Generators

Bison [8] is a modern version of the well-known and

widely used parser generator Yacc [10]. Bison from S-

attributed LALR(1) grammars generates bottom-up

parsers. Bison-generated parsers need scanners for read-

ing the input stream and tokenizing the characters. Flex is

a modern version of the well-known and widely used

scanner generator Lex [13]. Flex generates from regular

expressions scanners which are based on deterministic

finite automata (DFA). The combination of (F)Lex and

Bison/Yacc is widely used. All these tools are in and for C

or C++.

Coco-2 [6] and Coco/R [15] are compiler generators

based on the predecessors Alex and Coco [17]. Both tools

accept as input L-attributed LL(1) grammars and mainly

generate top-down parsers. The most important difference

between both tools lies in the top-down parsing technolo-

gy:

 Parsers generated by Coco-2 use an interpreter for

grammar code (G-code, a special kind of byte code de-

fined for Coco and extended for Coco-2) which sup-

ports flexible error recovery [7].

 Parsers generated by Coco/R use the classic recursive

descent method which makes them highly efficient.

Besides parsers, Coco-2 and Coco/R can generate scan-

ners based on DFA. Both tools are available in and for

several programming languages (including C and C++).

The compiler generator Smart [14] uses bottom-up pars-

ing and top-down semantic evaluation in the generated

parsers. Smart is written in and for Modula-2 [23]. Now-

adays, this programming language has no large spread

[21] any more, thus Smart has not been used on a wide

scale.

3.2 Compiler Description Languages

Compiler generators typically define their own compiler

description languages. Usually, some kind of regular ex-

pressions is used to define the lexical structure (set of to-

kens) of the input language for the compilers to be gener-

ated and some kind of Backus-Naur Form (BNF) [3] is

used for the definition of the syntax of the input language.

Examples are the compiler description languages for the

scanner and parser generators Flex and Bison.

Coco-2 [6] takes a different approach: its compiler de-

scription language Cocol-2 (Coco language) is used for

the description of both parts (scanner and parser), so Ex-

tended Backus-Naur Form (EBNF) [9, 22] can be used for

the definition of the lexical structure (set of tokens) as

well as for the syntax of the source languages of the com-

pilers to be generated. This leads to consistent, shorter

and more readable descriptions within a single document,

avoiding duplicate descriptions for the scanner and parser

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

99

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

in different notations and decreasing the probability of

errors.

4. Design

This chapter gives an overview of the solution approach

taken for BoB, lists the requirements for and presents a

sketch of its input language Cocol4Bob and finally ex-

plains the Bob’s architecture as well as the architecture of

compilers generated by BoB.

4.1 Solution Approach

Figure 1 presents a comparison of the power of the LL(k)

versus the LR(k) syntax analysis strategies. The question

visualized in Figure 1 is, which sequence α has to be cho-

sen for the nonterminal A. Comparing the information

available for answering this question (“known: ….”) – in

the left side for top-down analysis and in the right side for

bottom-up analysis – makes it evident, that top-down

analysis has less information during processing the stream

of tokens as bottom-up analysis, which additionally has

all the tokens of α which already have been pushed onto

the stack of the PDA. Simply put: more information al-

lows better decisions, so LR(k) is more powerful than

LL(k).

Fig. 1: Power – LL(k) versus LR(k) [5].

Another important aspect is that semantic evaluation dur-

ing top-down analysis has access to semantic attributes

that have already been computed, visualized by one big

green area in the syntax tree in the left side of Figure 1,

whereas semantic evaluation during bottom-up analysis

can only process synthesized attributes, visualized by sev-

eral small green areas in the syntax tree in the right side

of Figure 1.

Aho et al. in [1] pose the following key question “How

can we handle L-attributed syntax driven definitions on

LR grammars?” Their answer is: “Build the parse tree

first and then perform the translation.”

This leads to the central design decision for BoB (the

same as taken for Smart): first of all, syntactic analysis

must be performed in a bottom-up manner and afterwards,

semantic analysis can take place in a top-down manner.

Figure 2 shows a general overview of the solution ap-

proach. BoB processes files with compiler descriptions

(extension .ATG) written in Cocol4BoB using some pre-

defined text files, so called frames (extension .frm), con-

taining templates for the files to be generated. BoB gener-

ates input files for Flex (extension .l) and Bison (exten-

sion .yy), which are necessary to generate the scanners

and parsers. This intermediate step (Flex and Bison) has

the advantage that BoB does not have to generate complex

scanners and complex bottom-up parsers itself, as Flex

and Bison already provide well-tested ones. Additionally,

BoB delivers semantic analyzers (in C++), which are

compatible with the scanners and parsers generated by

Flex and Bison.

The BoB-Flex&Bison toolchain generates compilers

which process the input files in two phases:

1. lexical analysis and bottom-up syntax analysis and

2. top-down semantic evaluation.

But these two phases must be strictly separated. For data

exchange, appropriate data structures are used, that store

the necessary lexical and syntactical data. In case of lexi-

cal or syntactical errors in phase 1, the second phase can

and must be omitted, of course.

Fig. 2: General overview of the solution approach.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

100

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Another important aspect of Bob’s design is that BoB

itself is generated using Flex and Bison. The first version

of BoB has been generated from hand-written .l and .yy

files by Flex and Bison. Afterwards, an ATG for BoB in

Cocol4BoB has been defined, which allows a full boot-

strap: generating a new version of BoB with an older one,

e.g., with the first version of BoB. If yet another pass of

this bootstrapping process (e.g., generating the third ver-

sion using the second one) still yields a functional version

of BoB, it is shown, that all components of BoB are cor-

rect.

4.2 Requirements for and Sketch of Cocol4BoB

An important design decision concerns the definition of

an adequate input language for BoB: a new compiler de-

scription language was developed that meets the following

main requirements:

 User friendliness: high readability (e.g., with mean-

ingful keywords) and only a few syntactical constructs

for the whole compiler description (e.g., usage of

EBNF for both, the description of the scanner and the

parser, instead of regular expressions for the scanner

and primitive BNF for the parser).

 Single source principle: only one input file should be

necessary, which ensures consistency of the compiler

description and avoids multiple declarations (with dif-

ferent notations).

According to these requirements, Cocol-2, the proven

input language for Coco-2 [6], could be used as basis. But

Cocol-2 could not be used without minor changes and a

few extensions, because Cocol-2 uses symbols from the

target language C++ (e.g., the operators << and >>) and

BoB needs additional information which has to be incor-

porated into the language. Moreover, Flex and Bison do

not support all concepts available in Cocol-2. Therefore,

BoB uses a modified (e.g., <| and |> instead of << and >>)

and extended (e.g., keyword SEMDECL or the RECOVER

BY clause) version of Cocol-2 called Cocol for Bob or

Cocol4BoB for short.

4.3 Architecture of BoB

The package and class diagrams in Figure 3 show the

general architecture of Bob’s object-oriented implementa-

tion in C++. BoB consists of the two static libraries BoB-

Template and BoBCommon and the executable called BoB:

 The library BoBTemplate contains functionality for

the template mechanism used to generate files for

scanners, parsers and semantic evaluators from corre-

sponding templates provided in frame files (cf. Figure

2).

 The library BoBCommon contains the common parts

of BoB (as well as for BoB-generated compilers) nec-

essary for error handling in class Errors and some

utilities in class Utils.

 The executable BoB consist of the class BoB which

contains the main entry point. This class is responsible

for handling user input/output and for initiating the

scanner and the parser as well as the semantic evalua-

tor. All other classes in this executable are generated

by Flex and Bison from corresponding input files (ei-

ther hand-written .l and .yy files or files generated by

BoB from the BoB ATG by bootstrapping). The two

classes BoBScanner and BoBParser obviously contain

the generated scanner and the generated parser.

The library BoBTemplate is the centerpiece of BoB. It

contains the all the algorithms used for the transformation

from Bob’s input in Cocol4BoB files to output files which

subsequently serve as input files for Flex and Bison. The

class Template is the main part of this library. This class

provides an efficient key-value store which holds map-

pings for placeholders (keys) used in templates stored in

frame files to target content (values) for the generated

files. Based on this key-value store, Template provides

functionality to fill a frame which contains the corre-

sponding placeholders. The class TemplateTokens pro-

vides the definitions of the used frames and the used

placeholders.

The classes ScannerTemplate, ParserTemplate and

SemEvalTemplate differ in the particular target compo-

nent. They contain special transformation methods, which

take as input the data provided by the scanner and parser.

These methods create the desired output files using the

associated key-value store. Finally, after the whole input

processing, the output files are generated by filling the

frames.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

101

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 3: Architecture of BoB.

4.4 Architecture of Compilers generated by BoB

The package and class diagrams in Figure 4 show the

architecture of compilers generated by BoB (also compare

this to Figure 3). The X in the diagrams stands for the

name of the generated compiler (whose input language

typically is called X as well). The main class X can either

be derived from the provided frame file Main.frm (by cop-

ying Main.frm to X.cpp and applying some adaptations)

or be implemented from scratch by the developer. The

library BoBCommon is identical to the library used by

BoB (cf. Figure 3) as described in the previous section. It

contains error handling and some utility functionality.

The classes XParser, XScanner, Location, Position and

Stack are generated by the BoB-Flex&Bison toolchain

from an input file called X.ATG written in Cocol4BoB.

These classes have exactly the same functionality as the

corresponding classes within BoB (cf. Figure 3). The new

class XSemEval (generated by BoB directly) contains the

semantic evaluator. This class provides intermediate data

structures, which at runtime will be filled by the scanner

as well as the parser, and it contains all the semantic ac-

tions, which BoB copied from the input in X.ATG into

this class. (This is a main difference in comparison to

Smart, which uses special semantic code.) The semantic

evaluation will be initiated by the main class X.

Fig. 4: Architecture of compilers generated by BoB.

5. Implementation Aspects (for parser genera-

tion only)

BoB gets as input an ATG in Cocol4BoB, which describes

the (main parts of the) compiler to be generated. BoB ex-

tracts the relevant information for the scanner, the parser

as well as the semantic evaluator and uses a template

mechanism to fill in the predefined frames. Figure 5

shows the relevant parts of the input file and the overall

structure of the generated output files. It is apparent, that

Flex and Bison use the information of the keywords, to-

kens and token classes corporately. Nevertheless, to avoid

that the ATG has to be read and processed twice, the out-

put frames are filled concurrently (within a single pass).

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

102

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 5: Transformation of an ATG for language/compiler X

in Cocol4BoB to input for Flex (X.l) and Bison (X.yy) as well as

the semantic evaluator (XSem.cpp).

5.1 Grammar Rules – EBNF to BNF

The grammar rules in the ATG specify the syntactic struc-

ture that must be met by the input of the generated com-

pilers. In Cocol4BoB these grammar rules may be defined

using EBNF. But the generated rules in the target file (.y

for Bison) have to be in BNF. Therefore, a transformation

from EBNF to BNF is required. Mössenböck in [14] de-

scribes a method, which replaces the EBNF constructs for

grouping (…), option […] and repetition {…} with artifi-

cial nonterminal symbols and corresponding BNF rules.

Table 1 demonstrates by use of simple examples, that

there are (at least) two variants for applying these trans-

formations. The difference between the two variants is,

that

 variant 1 uses ε (empty sequence) rules whereas

 variant 2 uses additional alternatives.

So variant 1 leads to shorter rules and is therefore pre-

ferred. Unfortunately, the resulting ε alternatives also

have a downside: in certain situations they lead to LR(1)

conflicts (detected later on by Bison). As these conflicts

can easily be resolved by hand, BoB nevertheless uses

variant 1, because of the advantage of much shorter rules

in realistic, more complex examples.

Tab. 1: Transformation of EBNF to BNF (based on [14])

5.2 Semantic Evaluator

The semantic evaluator uses two data structures, contain-

ing

1. the lexical data (not the complete sequence of tokens

but the values for token classes only, these values are

provided by the scanner) and

2. the reduction sequence (defining the structure of the

syntax tree, provided by the parser).

The main functional part of the semantic evaluator is

comprised by the collection of the semantic actions copied

form the ATG into semantic methods.

In Cocol4BoB there is only one kind of element which

can provide lexical data: token classes (e.g., for numbers).

Token classes represent terminal symbols with associated

lexical data. Figure 6 (a) defines a simple grammar which

consists of non-terminal symbols (in upper-case letters)

and terminal symbols (tokens in lower-case letters). The

terminal symbols have associated attributes (simple values,

val for short), which provide lexical data for the semantic

evaluator. These lexical values are needed by the semantic

evaluator in the order of their occurrence in the input file.

Figure 6 (b), as an example, shows the syntax tree for the

input sequence bdac. The lexical data for this sequence is

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

103

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

stored in a queue shown in Figure 6 (c), a first-in-first-out

(FIFO) data structure (e.g., the number 1423 for the first

element b of the sequence).

Fig. 6: Rules (a), syntax tree (b) and lexical data (c) based on [14].

To perform the semantic evaluation in top-down manner,

the reduction sequence has to be captured during the bot-

tom-up syntax analysis. The basic idea for this approach

was first presented by Mössenböck in [14], Schmeiser and

Barnard in [18] present a similar idea. BoB uses

Mössenböck’s idea and adds some modifications to meet

the requirements of the semantic evaluator. While the

reduction sequence defines a tree-based structure, Bob’s

implementation uses a linear data structure for its repre-

sentation, a double-ended queue (dequeue, the sequential

STL [20] container std::deque). This linear data structure

has two advantages over a tree-structured one (like the

associative STL container std::set):

1. memory allocation for such a linear data structure is

more efficient, as only few but large blocks of memory

must be allocated and

2. in total, a deque needs less memory than a tree.

Fig. 7: Rules (a), syntax tree (b) and red. sequence (c) based on [14].

Figure 7 shows for an example the reduction sequence.

An entry in the reduction sequence represents a rule in the

grammar. To accomplish this, each rule in the grammar is

associated with a number starting with 1. The number 0

has a special meaning: it represents a node with no sons,

such nodes are usually used to exit loops. The reduction

sequence is built by special semantic actions added to the

rules of the generated parser. Because rules have a differ-

ent number of non-terminals, nodes have a different num-

ber of sons. Therefore, it is necessary, to save the number

of sons for each rule/node. This information is calculated

by BoB during the creation of the compiler.

There is another problem with the reduction sequence

described so far: Within a bottom-up parser, left recursion

is preferred over right recursion, as left recursion saves

space in the parser’s stack. Therefore, BoB uses left recur-

sion for transforming EBNF repetition {...} to BNF, see

Figure 8 (a). But the reduction sequence created by left

recursion, see Figure 8 (b), is different from the one creat-

ed by right recursion, see Figure 8 (c). For the semantic

evaluator, it is important, that the “loop reduction num-

ber” and the reduction numbers contained within the loop,

are evaluated successively, because otherwise the pro-

cessing order of the reduction numbers is disturbed. The

correct order is guaranteed only by a reduction sequence

created by right recursion, see Figure 8 (d). Therefore, a

transformation from left to right recursion (only within

loops) is required.

Fig. 8: Transformation of repetition from EBNF to BNF with left and right

rec. (a), red. sequ. for loop created by left rec. (b) and by right rec. (c),

processing of the red. sequ. created by left and right rec. – red. sequ. by left

rec. is not processable by top-down semantic methods (d).

As shown in Figure 9, this transformation is divided into

three steps: In the first step, all subsequent loop calls are

added to a temporary buffer. All other nodes within the

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

104

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

loop are added directly to the resulting reduction sequence.

When the loop terminates, the next two steps are per-

formed. In step 2, the first entry in the buffer is added to

the reduction sequence. And finally, in step 3, the last

elements in the buffer are added in reverse order to the

reduction sequence.

Fig. 9: Transformation of the red. sequ. for the example in Fig. 8 from left to

right recursion.

For each grammar rule, BoB creates one semantic method

which holds and executes all the semantic actions of this

rule. The grammar rule for the root non-terminal (the first

rule in a Cocol4BoB ATG) provides the main method for

the semantic evaluation process. This method is called

when the scanning and parsing of the input is finished.

The structure of semantic methods is similar to recogni-

tion functions created for a compiler using the method of

recursive descent [1]. The difference is that no lexical and

syntactical actions are performed, as these have already

been executed during the analysis phase. The following

code snippet in Cocol4BoB shows an example EBNF

grammar rule with the relevant parts for the semantic

method:

A<||> =

 LOCAL<||>
 PRE <||>
 POST <||>
 a<||> SEM<||>
 B<||> SEM<||>
| (b<||>)
| [C<||>]
| { c<||>
 | d<||> }

.

The numbers – represent the reduction numbers for

the resulting BNF grammar rules. And the numbers –

 represent the relevant data which is extracted from the

grammar rules for the creation of the semantic method

(see code snippet in C++ below). The following list ex-

plains the data used:

 Formal parameter list of semantic method.

 Local semantic declarations.

 Semantic action interleaved at the start of the method.

 Semantic action interleaved at the end of the method.

 Semantic action – before, after or between symbols.

 Actual parameter list to get the lexical data.

 Actual parameter list for calls of semantic methods.

The generated semantic method basically contains a

switch statement to select the different alternatives. The

control flow is defined by the reduction sequence. Within

the switch condition, a call to the method NextRedNr de-

livers the next reduction number and selects the next al-

ternative. Within an alternative, following components

can occur:

 For each terminal class, a call to a GETxAttr method

is inserted, this method delivers the captured lexical

data.

 For each non-terminal symbol, a call to the associated

semantic method is inserted.

 The semantic actions are copied directly from the

grammar.

 A grouping construct (…) in EBNF is implemented by

a switch statement.

 An option construct […] in EBNF is again imple-

mented with a switch statement and has an additional

ε alternative.

 The repetition {…} construct in EBNF is implement-

ed like the option construct. Additionally, the con-

struct is surrounded by a while statement, which ena-

bles repetition (without recursive calls). The ε alterna-

tive is used as exit point from the loop.

As can be seen for the artificial rules (grouping, option

and repetition), no separate semantic methods are created.

These constructs are implemented as embedded state-

ments which act like separate methods. This has the ad-

vantage, that there are no scope problems with semantic

variables. The code snippet in C++ below shows the se-

mantic method generated from the grammar rule A shown

above:

void A() {

 bool done = false;
 switch (NextRedNr()) {
 case :
 GETaAttr(); /*SEM*/ /*SEM*/
 B(); /*SEM*/ /*SEM*/
 break;
 case :

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

105

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

 switch (NextRedNr()) {
 case :
 GETbAttr();
 break;
 } // switch
 break;
 case :
 switch (NextRedNr()) {
 case :
 break;
 case :
 C();
 break;
 } // switch
 break;
 case :
 while (!done) {
 switch (NextRedNr()) {
 case :
 done = true;
 break;
 case :
 GETcAttr();
 break;
 case :
 GETdAttr();
 break;
 } // switch
 } // while
 break;
 } // switch

} // A

6. Evaluation

The new compiler generator toolchain BoB-Flex&Bison

combines the advantages of the simple input language for

Coco-2, the powerful bottom-up syntax analysis of Bison

and the powerful top-down semantic analysis concepts of

Smart and Coco-2. With the implementation of BoB pre-

sented in this paper, the goals (see chapter 2) were

reached and the requirements (see section 4.2) were met.

To assess especially the non-functional quality aspects of

BoB, a comparison with existing compiler generators is

necessary. Hence, the pros and cons of the (generated)

compilers in terms of usability, capability and perfor-

mance are compared.

6.1 Usability

The usability of a compiler generator heavily depends on

the compiler description language, since this language is

the “user interface” for a compiler generator. Coco-2 uses

Cocol-2, which was designed for simplicity and usability.

This is achieved primarily through the use of a single

input file, meaningful keywords and the use of EBNF for

both, the description of the scanner as well as the parser.

On the other hand, Flex and Bison use separate files for

the description of the scanner and the parser. The scanner

is described by regular expressions, while the parser is

described by BNF rules. This results in the disadvantage

that duplicate declarations are necessary in different nota-

tions, which can lead to inconsistency. Moreover, BNF is

less expressive than EBNF used by Cocol-2.

BoB uses a modified and extended version of Cocol-2

called Cocol4BoB. This language includes adjustments to

the target language C++ and to the compiler generators

Flex and Bison. Thus, it can be stated that Cocol4BoB

was built on an already established language and provides

all its advantages.

Another aspect concerning the usability of BoB is the

length of the toolchain: Since BoB is an additional com-

ponent, it increases the complexity. This problem can be

solved with automation by appropriate batch/shell scripts

or by using a build tool like CMake (see www.cmake.org).

6.2 Capability

The capability of a compiler generator is defined by the

power of the ATGs and the kind of supported attributes in

semantic actions. Coco-2 supports LL(1) grammars only.

LL(1) grammars are usually sufficient, but there are lan-

guages that cannot be described with this class of gram-

mars. But Coco-2 supports powerful L attribution. Thus,

inherited and synthesized attributes are allowed within

semantic actions.

In contrast to Coco-2, Bison can handle LALR(1) gram-

mars. LALR(1) grammars are a superset of LL(1) gram-

mars and can therefore describe a much larger class of

languages. On the other hand, Bison only supports the S

attribution or a kind of LR attribution using global varia-

bles.

So, the presented compiler generators have their strengths

and weaknesses regarding to their power in parsing and

evaluation of semantics. BoB has set out to combine the

strengths of them. Therefore, BoB supports L-attributed

LALR(1) grammars. In this respect, BoB is superior to

the other compiler generators mentioned here. Additional-

ly, its relatively simple input language Cocol4BoB lowers

the initial hurdles for aspiring compiler developers.

6.3 Performance

The advantages of BoB are not for free. A downside of

BoB is the minor performance during creation of the

compilers. But the main drawback is the performance of

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

106

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

the generated compilers, which is significantly worse than

those generated with Coco-2 or Flex and Bison.

The generation of compilers with BoB takes up to 20 %

more time in comparison with Coco-2 as well as with Flex

and Bison. Moreover and most important, compilers gen-

erated by Flex and Bison are up to six times faster, com-

pilers generated by Coco-2 are up to 30 % faster than

those generated by BoB. Until now, no optimizations with

respect to the runtime of BoB-generated compilers have

been applied, this is left to further work, and we expect

substantial speedups, so that BoB-generated compilers can

cope with compilers generated by Coco-2, but the effi-

ciency of compilers generated by Flex and Bison is out of

reach.

Another aspect to be considered is memory usage: Where-

as compilers generated by Coco-2 or by Flex and Bison

have constant memory complexity in the length of the

input sequence, those generated by BoB have a linear

complexity (mainly because of the reduction sequence).

So compiler developers have to decide which characteris-

tics are more important for their applications. There are

applications where the benefits of BoB exceed the draw-

backs in runtime and memory usage, especially for educa-

tional purposes.

7. Conclusions

In this paper we introduced the new compiler generator

BoB, implemented as preprocessor for Flex and Bison.

BoB not only combines the strengths of bottom-up syntax

analysis (LR grammars) and top-down evaluation of se-

mantics (L-attribution), but it also has a simple to use and

consistent input language for compiler description.

Since BoB (using Flex and Bison) generates compilers in

C++, it is restricted to this target language. Because BoB

supports the powerful L-attributed LALR(1) grammars,

the compiler developers have not to care for LL(1) con-

flicts and can use the intuitive inherited and synthesized

attributes. Therefore, BoB is the ideal compiler generator

toolchain for beginners. More details especially for im-

plementation aspects of scanner generation can be found

in [4].

Appendix

In the following, we present a small but complete example

written in Cocol4BoB for the evaluation of simple arith-

metic expressions (basic operations on integers only),

comparable to the task of a calculator (e.g., 17 + 4 = 21).

The same example is used for Coco-2 in [6] and [7], but

the notation there is Cocol-2 so Coco4BoB can be com-

pared to Cocol-2.

COMPILER Calc

CHARACTER SETS
 Digit = '0' .. '9'.
 whiteSpace = CHR(9) + EOL IGNORE.
 /*tab and end of line, blank ignored by default*/

COMMENTS
 FROM '--' TO EOL. --Ada comments
 FROM '//' TO EOL. //C++ comments
 FROM '/*' TO '*/'. /*C comments*/
 FROM '(*' TO '*)' NESTED. (*Modula-2 comments*)

TOKENS
 '+'. '-'.
 '*'. '/'.
 '('. ')'.

TOKEN CLASSES
 number<|int& val|> =
 digit { digit } LEX <|val = atoi(tokenStr);|>.

NONTERMINALS
 Calc.
 Expr<|int &e|>.
 Term<|int &f|>.
 Fact<|int &t|>.

RULES
Calc = LOCAL<|int e = 0;|>
 Expr<|e|> SEM<|cout << " = " << e;|>.

Expr<|int &e|> = LOCAL<|int t = 0;|>
 Term<|e|>
 { '+' Term<|t|> SEM<|e = e + t;|>
 | '-' Term<|t|> SEM<|e = e - t;|>
 }.

Term<|int &t|> = LOCAL<|int f = 0;|>
 Fact<|t|>
 { '*' Fact<|f|> SEM<|t = t * f;|>
 | '/' Fact<|f|> SEM<|t = t / f;|>
 }.

Fact<|int &f|> =
 number<|f|>
 | '(' Expr<|f|> ')'.

END Calc.

References

[1] Aho, A. V., M. S. Lam, R. Sethi and J. D. Ullman: Com-

pilers: Principles, Techniques, and Tools (2nd Edition).

Addison-Wesley, 2006.

[2] Backus, J. W., R. J. Beeber, S. Best, R. Goldberg, L. M.

Haibt, H. L. Herrick, R. A Nelson, D. Syre, P. B. Sheridan

H. Stern, I. Ziller, R. A Hughes and R. Nutt: The Fortran

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

107

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

automatic coding system. Proceedings of the IRE-AIEE-

ACM, 1957.

[3] Backus, J. W., F. L. Bauer, J. Green, C. Katz, J. McCarthy,

A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.

H. Wegstein, A. van Wijngaarden and M. Woodger: Re-

vised report on the algorithm language Algol 60. Com-

munications of the ACM, 6(1), 1963.

[4] Dichler, W.: BoB: Best of Both in Compiler Construction

– Combination of Bottom-up Syntax Analysis and Top-

down Semantic Evaluation. Master Thesis at the Universi-

ty of Applied Sciences Upper Austria, Hagenberg, 2013.

[5] Dobler, H.: Formal Languages and Automata Theory (in

German). Technical Report, University of Applied Scienc-

es Upper Austria, Hagenberg, 2011.

[6] Dobler, H. and K. Pirklbauer: Coco-2: A New Compiler

Compiler. ACM SIGPLAN Notices, Vol. 25, No. 5, 1990.

[7] Dobler H.: A Hybrid Top-Down Parsing Technique. ACM

SIGPLAN Notices, Vol. 26, No. 3, 1991.

[8] Donnelly, C. and R. Stallman: Bison – The Yacc compati-

ble Parser Generator. Free Software Foundation, Inc., 2.5

Edition, 2011.

[9] ISO: Information Technology – Syntactic Metalanguage –

Extended BNF. Norm ISO/IEC 14977:1996(E), Interna-

tional Organization for Standardization, 1996.

[10] Johnson, S. C.: Yacc: Yet Another Compiler-Compiler.

Technical Report, Bell Laboratories, 1975.

[11] Katwik, J. van: A preprocessor for Yacc or A poor man’s

approach for parsing attributed grammars. SIGPLAN No-

tices Vol. 18, No. 10, October 10th, 1983.

[12] Knuth, D.: Semantics of context-free languages. Mathe-

matical Systems Theory, 1968.

[13] Lesk, M. E. and E. Schmidt: Lex – A Lexical Analyzer

Generator. Technical Report, Bell Laboratories, 1975.

[14] Mössenböck, H.: Compiler Generating Systems for Mi-

crocomputers (in German). PhD Thesis at the Johannes

Kepler University Linz, Verlag VWGÖ, Wien, 1987.

[15] Mössenböck, H.: The Compiler Generator Coco/R. 2011.

www.ssw.uni-linz.ac.at/Research/Projects/Coco

[16] Paxson, V., W. Estes and J. Millaway: flex. The flex Pro-

ject, 2.5.35 Edition, 2007.

[17] Rechenberg, P. and H. Mössenböck: A Complier Genera-

tor for Microcomputers. Hanser, 1989.

[18] Schmeiser, J. P. and D. P. Barnard: Producing a top-down

parse order with bottom-up parsing. Information Pro-

cessing Letters 54, 1995.

[19] Sippu, S. and E. Soisalon-Soininen: Parsing Theory –

Volume II: LR(k) and LL(k) Parsing. EATCS Monographs

on Theoretical Computer Sciences: European Association

for Theoretical Computer Science. Springer, 1990.

[20] Stroustrup, B.: The C++ Programming Language, 4th

Edition. Addison-Wesley Professional, 2013.

[21] TIOBE Software: TIOBE Programming Community Index,

2013. www.tiobe.com/tpci.htm.

[22] Wirth, N.: What can we do about the unnecessary diversi-

ty of notation for syntactic definitions? Communications

of the ACM, 20(11), 1977.

[23] Wirth, N.: Programming in Modula-2. Texts and Mono-

graphs in Computer Science. Springer-Verlag, 3rd edition,

1985.

Wolfgang Dichler BSc (2011), MSc (2013) in Software Engineering,

Software Developer for Daimler and Magna Power Train, Software

Architect at MP2 IT Solutions.

Heinz Dobler Dipl.-Ing. in Computer Science (1986) Dr. tech.

(1993), Assistant Professor at Johannes Kepler University Linz, Aus-

tria; Professor for Software Engineering at the University of Applied

Sciences Upper Austria; Member of the ACM and IEEE.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

108

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

