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Abstract
The paper presented here addresses the problem of path 
planning in real time strategy games. We have proposed a new 
algorithm titled Map Abstraction with Adjustable Time Bounds. 
This algorithm uses an abstract map containing non-uniformly 
sized triangular sectors; the centroids of the sectors guide the 
path search in the game map. In a pre-processing step we 
calculate an upper and lower time limit to plan paths for a given 
two dimensional grid map that is known beforehand. Depending 
on the time limits, we vary the size of the sectors to save search 
time or to improve path quality. We have experimented using 
maps from commercial games such as Dragon’s Age: Origins 
and Warcraft III. In the worst case MAAT returns paths that are 
8% less optimal. MAAT has an expensive pre-processing step 
which ultimately lowers the overhead CPU time consumed 
during game play by 1.1 milliseconds.

Keywords: Pathfinding, path-planning, map abstraction, 
hierarchical

1. Introduction
In this paper we have addressed the problem of path 
planning in real time strategy game (RTS) maps. In such 
maps, using a naïve A* search [1] takes more search time 
than desired [2]. For RTS games, high path planning time 
becomes a restricting factor when many mobile non-
player characters are involved. Numerous improvements 
to A* search exist which reduce the search time. 
Hierarchical Pathfinding A* (HPA*) [3] involves placing 
1 to 3 levels of hierarchical abstract maps on the game 
map to find quicker paths by sacrificing path quality. An 
improved version of HPA* was presented in the paper 
titled HPA* Enhancements [4]. Advanced sub-goaling 
algorithms such as LRTA* with sub-goaling [5] improve 
path quality and lower search time as well.

We have proposed an algorithm – Map Abstraction 
with Adjustable Time Bounds (MAAT) to determine an 
upper time limit and lower time limit that should be 
allocated to path-planning for our planning algorithm 
based on two dimensional grid maps where the maps are 
known/explored beforehand. In MAAT a single level 
abstract map consisting of sectors is placed on top of the 
game map. These sectors are split or merged to lower 

search time or increase path quality while attempting to 
keep the planning time (not including overhead time) 
within the new time limits. The new algorithm, however, 
has an expensive offline pre-processing step in which the 
new time limits are determined along with an initial 
abstract map of non-uniform sectors for a given map. 
Once the pre-processing is completed MAAT successfully 
lowers the overhead involved in modifying the abstract 
map by 1.1 milliseconds.

Experimental results show that MAAT performs 
faster than its predecessor Demand Sensitive Map 
Abstraction [6] and returns paths that are 8% closer to 
optimal, in the worst case, than HPA* (without path 
smoothing and refinement). Moreover MAAT stays 
within the new time bounds in an average of 84% path 
planning sessions. 

2. Background

The current game industry endorsed time bounds for path 
planning is 1 millisecond to 3 milliseconds [7]. Many 
techniques are employed to address the high search time 
of A* search. One of the techniques suggests using 
abstract maps built from real game world maps and 
finding an abstract path from the abstract map. This 
abstract path is then refined into real path. It saves search 
time to use abstract maps, at the cost of lower path quality 
(longer paths) (Botea et al., 2004).

In a paper titled Near Optimal Hierarchical 
Pathfinding, the authors overlay an abstract map 
comprised of uniform sectors with entrances from one 
sector to another and within sectors, over the game map. 
Any path search request is first computed on the abstract 
map to identify the sectors that should contain the optimal 
path. The links of these sectors (given by intra and inter 
edges) give the abstract path. Then the abstract path is 
refined on the game map using A* search. The authors 
state that in the worst case the path received is 10% less 
optimal compared to the path returned by using a naïve 
A* search, without using path smoothing and refinement.
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Demand Sensitive Map Abstraction (DSMA) [6] is 
another such technique where central points of abstract 
regions provide sub-goals for guiding the A* search in the 
real game map. Each sector in the abstract map in DSMA 
is associated with a demand. Demand of a sector is 
defined as the number of times the sector contained start 
and goal points plus the number of times it was expanded 
by the A* search on the abstract map. Conversely, 
demand of sectors decrease if they are not expanded in 
subsequent path planning.

Fig 1. Illustration of non-uniform abstract map

Depending on the time taken to find a real path the 
sectors are either decomposed or composed non-uniformly 
across the map, shown in figure 1. If the search time of 
the previous path went above 3 milliseconds, the highest 
demand sector was decomposed and if the search time 
went below 1 millisecond, two neighbor sectors with the 
lowest collective demand were composed or merged. 
This paper suggests a new algorithm – Map Abstraction 
with Adjustable Time Bounds (MAAT), inspired from the 
key ideas behind DSMA and addresses the need of 
transparent policies used in DSMA.

3.Proposed Methodology

3.1 Overview of MAAT

In this section we will discuss the high level A* search on 
the abstract map and the low level A* search on the game 
map and the concepts of decomposition and composition. 
Consider the abstract map in figure 2 where the triangles 
represent sectors on the map. Sub-goals for the low level 
A* search are provided by the grids below that coincide 
with the centroid of the sectors, shown in black squares 
within the sectors. A group of these central grids is 
returned by the A* search on the abstract map. The low 
level A* search connects these grids depending on the 
map data.
If during the low level search i.e. the A* search on the 
game map, a centroid-coinciding grid (say g2) is not 
reachable from one grid (g1) due to obstacles on that grid, 
then the A* search attempts to connect g1 to the next grid 

- g3 on the abstract path, where the abstract path is given 
by the grids g1->  g2  ->  g3.

Fig 2. Decomposition and composition

3.2 Pre-processing

This step is employed to find attainable time bounds for 
the time taken by A* search to find a path (Abstract path 
+ Complete path). This step also returns an initial 
customized abstract map with non-uniform sectors. This 
customized abstract map ensures fewer decompositions 
and compositions after pre-processing.

The pre-processing begins with a game map and an 
abstract map overlaid on it. N-number of start-goal 
positions are generated for the map and 1ms -3 ms is 
taken as a standard time bound from which an attainable 
time bound is to be extrapolated. If the search time for a 
certain start goal pair went above 3 milliseconds the most 
time consuming sector in the path is decomposed and the 
path is recalculated to check the validity of the 
decomposition. That is if the time after decomposition is 
not lower than previous search time, the decomposition is 
reverted. Otherwise, we record the new time along with 
the previous time and the action taken (composition / 
decomposition). We also associate a quality with the new 
search time. This quality is marked as “good” if the new 
search time is closer to 3 ms and “bad” if it is closer to the 
previous search time.

Similarly, if the search time goes below 1 millisecond, we 
compose two least time consuming neighbor sectors and 
check for the validity and quality of the action.  An 
illustration of relative quality is shown in figure 3, where 
T1 is the previous time taken and T2 is the new search 
time.
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Fig 3. Quality of new search time

Fig 4. Most time consuming sector

We define most time consuming sector as the 
common sector in the set of abstract sectors for which the 
A* search on the real map takes maximum time to return 
an actual path. Consider figure 4, where S1, S2 and S3 
are the centers of the triangular regions and t1, t2 and t3 
are time taken by A* search to find real path between S1-
S2, S2-S3 and S3-S4 respectively.  If t1+ t2 is greater 
than t2 + t3 then the most time consuming sector is the 
common sector taking the maximum collective time, the 
sector containing S2 in this case. This sector is 
decomposed if the search time went above 3 milliseconds. 
Conversely, S3 and S4 form the least time consuming 
sectors (composed / merged when needed).

This pre-processing step continues until all the 
random start-goal positions are exhausted. The new upper 
time limit is calculated by taking the average of search 
times with “good” quality for all decompositions. While 
the new lower time limit is calculated by taking the 
average of all search times with “good” quality for all 
compositions. This time range can be considered as the 
attainable best in the given set of start-goal points 
(without any random obstacles in the map) as they are 
average of all search times that were closer to the 
desirable range. Taking more start-goal points (increasing 
the value on N) will yield statistically reliable results. 
These new time limits can be associated with the map and 

machine they were run on and can be adapted for different 
systems and maps. 

3.3 Online Search

The online search is a simple operation where most time 
consuming sectors are decomposed if the search time 
when above the new upper time limit. On the other hand, 
if the search time went below the new lower time limit, 
two of the lowest time consuming neighbor sectors are 
composed or merged.

The decomposition will ensure lower search time as 
new sub goals (centers of sectors) are generated that are 
closer to the current position, thereby limiting A* search 
time on the real map. While the composition action will 
ensure that the A* search finds better paths, at the cost of 
more search time by making the sub-goals distant. To sum 
up we are claiming that if no sub-goals are used, the path 
returned by A* search will be optimal and as we keep 
adding more sub-goals, the path loses optimality but the 
search time is reduced.

During both the pre-processing and online search, if 
the start and goal lie in the same sector and the search 
time falls below 1 millisecond, no composition action will 
take place as we are receiving the optimal path returned 
by the A* search on the game map. Moreover if the 
abstract map has only the basic configuration consisting 
of four sectors, all at level 0 then we pass the request to 
the real map A* search, as not much time will saved in 
this trivial case, as shown in figure 5 (a). The maximum 
decomposition we allow is shown figure 5 (b) where all 
sectors are at level 4 (i.e. derived by decomposing the base 
sector 4 times). The maximum level of decomposition can 
be altered in future.

(a)                      (b)
Fig 5. Basic configuration and maximum decomposition 

4. Experiments

All the maps used for experiments were provided by 
Nathan Sturtevant [8]. The experiments are also designed 
according to the specifications mentioned in (Sturtevant, 
2012). We have used grid based maps from games like 
Dragon’s Age origins (10 maps, size ranging from 256 x 
260 grids to 492 x 512 grids), Warcraft III (10 maps all of 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

39

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



size 512 x 512 grids) and artificially created maps with 
random obstacles. The map data was formatted into a 
format in which all traversable terrain were uniform, after 
replacing shallow water, trees and water bodies with 
normal ground. All maps have octile navigation and 
crossing a diagonal has weight √2 while cardinal 
directions have a cost of 1. Moreover, a diagonal 
movement is allowed only if an alternative cardinal 
movement exists to ensure that a diagonal movement is 
not possible across two obstacles touching each other at 
the corners.

Random maps are created by randomly introducing 
obstacles into the map starting with 10% up to a 
maximum of 40% by a step of 5%. Maps containing more 
than 40% obstacles are left with very little traversable 
terrain and hence do not provide challenging pathfinding 
problems. For each map we have generated 1000 random 
pairs of start and goal positions always ensuring that the 
points are connected by successfully running an A* search 
between them.

To measure the performance of MAAT we have 
compared it to DSMA and our implementation of HPA* 
(with three levels of abstraction and without path 
smoothing and refinement). We have measured the 
average number of nodes expanded, running time and 
average path length of the algorithms. To measure the 
solution quality we have used the percent error metric 
(Botea et al., 2004) given by the Eq (1).

(1)

5. Results

The graph in figure 6 (a)  shows the number of nodes
expanded by the HPA*, DSMA and MAAT. This includes 
the nodes in abstract map. We can see that MAAT 
expands more nodes than HPA* but less than DSMA. The 
reason is that HPA* has more nodes in the abstract map 
which reduces the nodes expanded in the game map. 
MAAT has more nodes on the abstract map than DSMA 
as a result of which MAAT expands fewer nodes on the 

game map.

Fig 6 (a).

Fig 6 (b). Comparison of nodes expanded and CPU time

The graph in figure 6 (b) indicates the CPU time 
consumed by the three algorithms to find complete paths. 
This time does not include the pre-processing step of 
MAAT, the composition and decomposition queue 
management of DSMA or the start-goal insertion of 
HPA*.  The results indicate that MAAT takes less time 
than DSMA but more than HPA* which is consistent with 
the results on nodes expanded.

We have also found that MAAT takes an average of 
0.2 milliseconds in composition or decomposition during 
online search while DSMA takes an average of 1.3 
milliseconds in composition or decompostion operation. 
The reason is that it stores information regarding sectors 
in queues and arranges them according to rise and fall in 
demands associated with them and this operation is time 
consuming given the current implementation. 
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Figure 7 shows the graph of error percentage showing 
that for shorter paths MAAT gives better solution quality. 
This is due to the fact that MAAT uses naïve A* search if 
the abstract path goes through basic sectors at level 0. 
MAAT has consistently better path quality compared to 
HPA*. This gain in path quality comes at the cost of 
expensive pre-processing. However, the pre-processed 
results can be shipped with the game and hence will not 
affect game play. 

Fig 7. Solution quality

Both DSMA and MAAT aim at trading off path 
quality to search time and vice versa in real time. 
However the results indicate that MAAT performance is 
better as it gives better paths than HPA* by altering the 
granularity of the abstract map non-uniformly.  MAAT 
also takes less overhead time and less search time 
compared to DSMA. Moreover, MAAT does not have the 
high storage requirements of DSMA. 

Experiments on the current system indicated that in 
the pre-processing stage MAAT found the new average 
lower time limit to be 0.8 ms and the average upper time 
limit to be 8.4 milliseconds.  In an average of 84% cases 
MAAT was able to stay within these limits, derived from 
graph in figure 6 (b). On the other hand DSMA was able 
to stay in the range of 1 ms to 3 ms in an average of 33% 
cases. This does not indicate that DSMA has poor 
performance. It show that DSMA struggles with time 
consuming composition and decomposition operations 
trying to attain the pre-defined limits. MAAT, on the 
other hand, saves the overhead time by 1.1 milliseconds, 
using new time limits.

6. Conclusion

We have proposed a new pathfinding algorithm titled 
Map Abstraction with Adjustable Time Bounds (MAAT). 
MAAT assigns a lower and upper time limit for a given 
map and system using the industry endorsed 1ms – 3ms 
range as a seed range. The new time limits can be 
attained by MAAT in 84% cases by altering the 
granularity of the abstract map non-uniformly and in real 
time. Experimental results show that MAAT returns 
better paths than HPA* and takes less time compared to 
its predecessor - DSMA. It involves using a pre-
processing step which is calculated offline. This step is 
expensive but it will not affect game play. MAAT takes 
1.1 milliseconds less overhead time compared to DSMA 
during online search. Moreover MAAT has a transparent 
policy which is easy to implement and can be modified in 
future.  

Future work can involve running MAAT for more 
iterations in the pre-processing step and on different 
systems so find an average system-independent time 
range. Another direction of effort can be put in modifying 
MAAT and the idea of non-uniform abstract maps to 
three dimensional game worlds comprised of multiple 
levels.
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