
Map Abstraction with Adjustable Time Bounds

Sourodeep Bhattacharjee and Scott D. Goodwin
School of Computer Science, University of Windsor

Windsor, N9B 3P4, Canada
sourodeepbhattacharjee@gmail.com, sgoodwin@uwindsor.ca

Abstract
The paper presented here addresses the problem of path
planning in real time strategy games. We have proposed a new
algorithm titled Map Abstraction with Adjustable Time Bounds.
This algorithm uses an abstract map containing non-uniformly
sized triangular sectors; the centroids of the sectors guide the
path search in the game map. In a pre-processing step we
calculate an upper and lower time limit to plan paths for a given
two dimensional grid map that is known beforehand. Depending
on the time limits, we vary the size of the sectors to save search
time or to improve path quality. We have experimented using
maps from commercial games such as Dragon’s Age: Origins
and Warcraft III. In the worst case MAAT returns paths that are
8% less optimal. MAAT has an expensive pre-processing step
which ultimately lowers the overhead CPU time consumed
during game play by 1.1 milliseconds.

Keywords: Pathfinding, path-planning, map abstraction,
hierarchical

1. Introduction
In this paper we have addressed the problem of path
planning in real time strategy game (RTS) maps. In such
maps, using a naïve A* search [1] takes more search time
than desired [2]. For RTS games, high path planning time
becomes a restricting factor when many mobile non-
player characters are involved. Numerous improvements
to A* search exist which reduce the search time.
Hierarchical Pathfinding A* (HPA*) [3] involves placing
1 to 3 levels of hierarchical abstract maps on the game
map to find quicker paths by sacrificing path quality. An
improved version of HPA* was presented in the paper
titled HPA* Enhancements [4]. Advanced sub-goaling
algorithms such as LRTA* with sub-goaling [5] improve
path quality and lower search time as well.

We have proposed an algorithm – Map Abstraction
with Adjustable Time Bounds (MAAT) to determine an
upper time limit and lower time limit that should be
allocated to path-planning for our planning algorithm
based on two dimensional grid maps where the maps are
known/explored beforehand. In MAAT a single level
abstract map consisting of sectors is placed on top of the
game map. These sectors are split or merged to lower

search time or increase path quality while attempting to
keep the planning time (not including overhead time)
within the new time limits. The new algorithm, however,
has an expensive offline pre-processing step in which the
new time limits are determined along with an initial
abstract map of non-uniform sectors for a given map.
Once the pre-processing is completed MAAT successfully
lowers the overhead involved in modifying the abstract
map by 1.1 milliseconds.

Experimental results show that MAAT performs
faster than its predecessor Demand Sensitive Map
Abstraction [6] and returns paths that are 8% closer to
optimal, in the worst case, than HPA* (without path
smoothing and refinement). Moreover MAAT stays
within the new time bounds in an average of 84% path
planning sessions.

2. Background

The current game industry endorsed time bounds for path
planning is 1 millisecond to 3 milliseconds [7]. Many
techniques are employed to address the high search time
of A* search. One of the techniques suggests using
abstract maps built from real game world maps and
finding an abstract path from the abstract map. This
abstract path is then refined into real path. It saves search
time to use abstract maps, at the cost of lower path quality
(longer paths) (Botea et al., 2004).

In a paper titled Near Optimal Hierarchical
Pathfinding, the authors overlay an abstract map
comprised of uniform sectors with entrances from one
sector to another and within sectors, over the game map.
Any path search request is first computed on the abstract
map to identify the sectors that should contain the optimal
path. The links of these sectors (given by intra and inter
edges) give the abstract path. Then the abstract path is
refined on the game map using A* search. The authors
state that in the worst case the path received is 10% less
optimal compared to the path returned by using a naïve
A* search, without using path smoothing and refinement.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

37

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Demand Sensitive Map Abstraction (DSMA) [6] is
another such technique where central points of abstract
regions provide sub-goals for guiding the A* search in the
real game map. Each sector in the abstract map in DSMA
is associated with a demand. Demand of a sector is
defined as the number of times the sector contained start
and goal points plus the number of times it was expanded
by the A* search on the abstract map. Conversely,
demand of sectors decrease if they are not expanded in
subsequent path planning.

Fig 1. Illustration of non-uniform abstract map

Depending on the time taken to find a real path the
sectors are either decomposed or composed non-uniformly
across the map, shown in figure 1. If the search time of
the previous path went above 3 milliseconds, the highest
demand sector was decomposed and if the search time
went below 1 millisecond, two neighbor sectors with the
lowest collective demand were composed or merged.
This paper suggests a new algorithm – Map Abstraction
with Adjustable Time Bounds (MAAT), inspired from the
key ideas behind DSMA and addresses the need of
transparent policies used in DSMA.

3.Proposed Methodology

3.1 Overview of MAAT

In this section we will discuss the high level A* search on
the abstract map and the low level A* search on the game
map and the concepts of decomposition and composition.
Consider the abstract map in figure 2 where the triangles
represent sectors on the map. Sub-goals for the low level
A* search are provided by the grids below that coincide
with the centroid of the sectors, shown in black squares
within the sectors. A group of these central grids is
returned by the A* search on the abstract map. The low
level A* search connects these grids depending on the
map data.
If during the low level search i.e. the A* search on the
game map, a centroid-coinciding grid (say g2) is not
reachable from one grid (g1) due to obstacles on that grid,
then the A* search attempts to connect g1 to the next grid

- g3 on the abstract path, where the abstract path is given
by the grids g1-> g2 -> g3.

Fig 2. Decomposition and composition

3.2 Pre-processing

This step is employed to find attainable time bounds for
the time taken by A* search to find a path (Abstract path
+ Complete path). This step also returns an initial
customized abstract map with non-uniform sectors. This
customized abstract map ensures fewer decompositions
and compositions after pre-processing.

The pre-processing begins with a game map and an
abstract map overlaid on it. N-number of start-goal
positions are generated for the map and 1ms -3 ms is
taken as a standard time bound from which an attainable
time bound is to be extrapolated. If the search time for a
certain start goal pair went above 3 milliseconds the most
time consuming sector in the path is decomposed and the
path is recalculated to check the validity of the
decomposition. That is if the time after decomposition is
not lower than previous search time, the decomposition is
reverted. Otherwise, we record the new time along with
the previous time and the action taken (composition /
decomposition). We also associate a quality with the new
search time. This quality is marked as “good” if the new
search time is closer to 3 ms and “bad” if it is closer to the
previous search time.

Similarly, if the search time goes below 1 millisecond, we
compose two least time consuming neighbor sectors and
check for the validity and quality of the action. An
illustration of relative quality is shown in figure 3, where
T1 is the previous time taken and T2 is the new search
time.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

38

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig 3. Quality of new search time

Fig 4. Most time consuming sector

We define most time consuming sector as the
common sector in the set of abstract sectors for which the
A* search on the real map takes maximum time to return
an actual path. Consider figure 4, where S1, S2 and S3
are the centers of the triangular regions and t1, t2 and t3
are time taken by A* search to find real path between S1-
S2, S2-S3 and S3-S4 respectively. If t1+ t2 is greater
than t2 + t3 then the most time consuming sector is the
common sector taking the maximum collective time, the
sector containing S2 in this case. This sector is
decomposed if the search time went above 3 milliseconds.
Conversely, S3 and S4 form the least time consuming
sectors (composed / merged when needed).

This pre-processing step continues until all the
random start-goal positions are exhausted. The new upper
time limit is calculated by taking the average of search
times with “good” quality for all decompositions. While
the new lower time limit is calculated by taking the
average of all search times with “good” quality for all
compositions. This time range can be considered as the
attainable best in the given set of start-goal points
(without any random obstacles in the map) as they are
average of all search times that were closer to the
desirable range. Taking more start-goal points (increasing
the value on N) will yield statistically reliable results.
These new time limits can be associated with the map and

machine they were run on and can be adapted for different
systems and maps.

3.3 Online Search

The online search is a simple operation where most time
consuming sectors are decomposed if the search time
when above the new upper time limit. On the other hand,
if the search time went below the new lower time limit,
two of the lowest time consuming neighbor sectors are
composed or merged.

The decomposition will ensure lower search time as
new sub goals (centers of sectors) are generated that are
closer to the current position, thereby limiting A* search
time on the real map. While the composition action will
ensure that the A* search finds better paths, at the cost of
more search time by making the sub-goals distant. To sum
up we are claiming that if no sub-goals are used, the path
returned by A* search will be optimal and as we keep
adding more sub-goals, the path loses optimality but the
search time is reduced.

During both the pre-processing and online search, if
the start and goal lie in the same sector and the search
time falls below 1 millisecond, no composition action will
take place as we are receiving the optimal path returned
by the A* search on the game map. Moreover if the
abstract map has only the basic configuration consisting
of four sectors, all at level 0 then we pass the request to
the real map A* search, as not much time will saved in
this trivial case, as shown in figure 5 (a). The maximum
decomposition we allow is shown figure 5 (b) where all
sectors are at level 4 (i.e. derived by decomposing the base
sector 4 times). The maximum level of decomposition can
be altered in future.

(a) (b)
Fig 5. Basic configuration and maximum decomposition

4. Experiments

All the maps used for experiments were provided by
Nathan Sturtevant [8]. The experiments are also designed
according to the specifications mentioned in (Sturtevant,
2012). We have used grid based maps from games like
Dragon’s Age origins (10 maps, size ranging from 256 x
260 grids to 492 x 512 grids), Warcraft III (10 maps all of

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

39

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

size 512 x 512 grids) and artificially created maps with
random obstacles. The map data was formatted into a
format in which all traversable terrain were uniform, after
replacing shallow water, trees and water bodies with
normal ground. All maps have octile navigation and
crossing a diagonal has weight √2 while cardinal
directions have a cost of 1. Moreover, a diagonal
movement is allowed only if an alternative cardinal
movement exists to ensure that a diagonal movement is
not possible across two obstacles touching each other at
the corners.

Random maps are created by randomly introducing
obstacles into the map starting with 10% up to a
maximum of 40% by a step of 5%. Maps containing more
than 40% obstacles are left with very little traversable
terrain and hence do not provide challenging pathfinding
problems. For each map we have generated 1000 random
pairs of start and goal positions always ensuring that the
points are connected by successfully running an A* search
between them.

To measure the performance of MAAT we have
compared it to DSMA and our implementation of HPA*
(with three levels of abstraction and without path
smoothing and refinement). We have measured the
average number of nodes expanded, running time and
average path length of the algorithms. To measure the
solution quality we have used the percent error metric
(Botea et al., 2004) given by the Eq (1).

(1)

5. Results

The graph in figure 6 (a) shows the number of nodes
expanded by the HPA*, DSMA and MAAT. This includes
the nodes in abstract map. We can see that MAAT
expands more nodes than HPA* but less than DSMA. The
reason is that HPA* has more nodes in the abstract map
which reduces the nodes expanded in the game map.
MAAT has more nodes on the abstract map than DSMA
as a result of which MAAT expands fewer nodes on the

game map.

Fig 6 (a).

Fig 6 (b). Comparison of nodes expanded and CPU time

The graph in figure 6 (b) indicates the CPU time
consumed by the three algorithms to find complete paths.
This time does not include the pre-processing step of
MAAT, the composition and decomposition queue
management of DSMA or the start-goal insertion of
HPA*. The results indicate that MAAT takes less time
than DSMA but more than HPA* which is consistent with
the results on nodes expanded.

We have also found that MAAT takes an average of
0.2 milliseconds in composition or decomposition during
online search while DSMA takes an average of 1.3
milliseconds in composition or decompostion operation.
The reason is that it stores information regarding sectors
in queues and arranges them according to rise and fall in
demands associated with them and this operation is time
consuming given the current implementation.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

40

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Figure 7 shows the graph of error percentage showing
that for shorter paths MAAT gives better solution quality.
This is due to the fact that MAAT uses naïve A* search if
the abstract path goes through basic sectors at level 0.
MAAT has consistently better path quality compared to
HPA*. This gain in path quality comes at the cost of
expensive pre-processing. However, the pre-processed
results can be shipped with the game and hence will not
affect game play.

Fig 7. Solution quality

Both DSMA and MAAT aim at trading off path
quality to search time and vice versa in real time.
However the results indicate that MAAT performance is
better as it gives better paths than HPA* by altering the
granularity of the abstract map non-uniformly. MAAT
also takes less overhead time and less search time
compared to DSMA. Moreover, MAAT does not have the
high storage requirements of DSMA.

Experiments on the current system indicated that in
the pre-processing stage MAAT found the new average
lower time limit to be 0.8 ms and the average upper time
limit to be 8.4 milliseconds. In an average of 84% cases
MAAT was able to stay within these limits, derived from
graph in figure 6 (b). On the other hand DSMA was able
to stay in the range of 1 ms to 3 ms in an average of 33%
cases. This does not indicate that DSMA has poor
performance. It show that DSMA struggles with time
consuming composition and decomposition operations
trying to attain the pre-defined limits. MAAT, on the
other hand, saves the overhead time by 1.1 milliseconds,
using new time limits.

6. Conclusion

We have proposed a new pathfinding algorithm titled
Map Abstraction with Adjustable Time Bounds (MAAT).
MAAT assigns a lower and upper time limit for a given
map and system using the industry endorsed 1ms – 3ms
range as a seed range. The new time limits can be
attained by MAAT in 84% cases by altering the
granularity of the abstract map non-uniformly and in real
time. Experimental results show that MAAT returns
better paths than HPA* and takes less time compared to
its predecessor - DSMA. It involves using a pre-
processing step which is calculated offline. This step is
expensive but it will not affect game play. MAAT takes
1.1 milliseconds less overhead time compared to DSMA
during online search. Moreover MAAT has a transparent
policy which is easy to implement and can be modified in
future.

Future work can involve running MAAT for more
iterations in the pre-processing step and on different
systems so find an average system-independent time
range. Another direction of effort can be put in modifying
MAAT and the idea of non-uniform abstract maps to
three dimensional game worlds comprised of multiple
levels.

References

[1] Hart, P.E. et al, 1968. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2), pp.100--107.
[2] Sturtevant, N. & Buro, M., 2005. Partial pathfinding using
map abstraction and refinement. In Proceedings of the National
Conference on Artificial Intelligence. Ch. 3. p.1392.
[3] Botea, A. et al, 2004. Near optimal hierarchical path-finding.
Journal of game development, 1(1), pp.7-28.
[4] Jansen, R.M. & Michael, B., 2007. HPA* enhancements. In
Proceedings of the Third Artificial Intelligence and Interactive
Digital Entertainment Conference, Stanford, California, USA.,
2007.
[5] Hernandez, C. & Baier, J.A., 2011. Fast subgoaling for
pathfinding via real-time search. In Proceedings of the 21th
International Conference on Automated Planning and
Scheduling (ICAPS)., 2011.
[6] Bhattacharjee, S. & Goodwin, S.D., 2013. Pathfinding by
Demand Sensitive Map Abstraction. In Proceedings of 26th
Canadian Conference on Artificial Intelligence.
[7] Bulitko, V. et al, 2007. Graph abstraction in real-time
heuristic search. JAIR, 30, pp.51-100.
[8] Sturtevant, N.R., 2012. Benchmarks for grid-based
pathfinding. Computational Intelligence and AI in Games, IEEE
Transactions on, 4(2), pp.144-48.

First Author Sourodeep Bhattacharjee has completed Bachelor of
Technology in Computer Science (2010) from West Bengal
University of Technology and Master of Science in Computer Science

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

41

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

(2012) from University of Windsor, Windsor, Ontario. He is currently
employed as Senior Research Fellow with CSIR-Cetral Mechanical
Engineering Research Institute – Embedded Systems Laboratory .
His research interests revolve around machine learning, artificial
intelligence, and energy informatics.

Second Author Dr. Scott Goodwin is professor with School of
Computer Science, University of Windsor, Ontario, Canada. His
current research interests is Artificial Intelligence in Games.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

42

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

