
A Survey: variants of TCP in Ad-hoc networks

Komal Zaman1, Muddesar Iqbal1, Muhammad Shafiq1, Azeem Irshad2, Saqib Rasool3

1Faculty of Computing & Information Technology
University of Gujrat, Gujrat, Pakistan

komal_zaman@ymail.com,{m.iqbal, shafiq}@uog.edu.pk
2Department of Computer Science & Information Technology

International Islamic University, Islamabad, Pakistan
irshadazeem2@gmail.com

saqib.pk@uog.edu.pk
3Computer science department,

National University of Science and Technology (NUST), Pakistan

Abstract:
MANET (Mobile Ad-hoc network) forms a temporary network
of wireless mobile nodes without any infrastructure where all
nodes are allowed to move freely, configure themselves and
interconnect with its neighbors to perform peer to peer
communication and transmission. TCP (Transmission Control
Protocol) offers reliable, oriented connection and mechanism
of end to end delivery. This article provides the review and
comparison of existing variants of TCP for instance: The TCP
Tahoe, The TCP Reno, The TCP New Reno, The Lite, The
Sack, The TCP Vegas, Westwood and The TCP Fack. TCP’s
performance depends on the type of its variants due to missing
of congestion control or improper activation procedures such
as Slow Start, Fast Retransmission, and Congestion Avoidance,
Retransmission, Fast Recovery, Selective Acknowledgement
mechanism and Congestion Control. This analysis is essential
to be aware about a better TCP implementation for a specific
scenario and then nominated a suitable one.

Keywords: Mobile ad hoc network, TCP, Congestion control,
Congestion Avoidance

1. Introduction

A major Internet protocol is Transmission Control
Protocol (TCP) [1][2] that approximately carries 90%
traffic of Internet in today’s diverse wireless and wired
networks. TCP is end to end reliable protocol that
delivers between two objects a consistent data
transmission. It is extensively used as an oriented
connection of transport layer protocol which offers
reliable delivery of data packet over undependable links.
The primary goal of TCP is to provide reliable services
of data transfer and an oriented connection among
different applications to make them able to provide these
services on top of an unreliable communication system.
Therefore, TCP needs to consider reliability flow control,

TCP segments, data transfer, multiplexing, connection
management and congestion control. Transmission
 Control Protocol does not depend on the underlying
network layer which leads to design of several TCP
variants based on wired network’s properties. On the
other hand, congestion control algorithms of TCP may
not give sound performance in diverse and
heterogeneous environment. Transmission Control
Protocol extensively tuned at transport layer to give
good performance in old wired network. However, the
existing form of Transmission Control Protocol is not
well suitable for MANETs where broken routes
generates the packet loss cause for TCP’s congestion
control mechanism’s invocation.
Even though many researches and protocol
modifications have been directed and recommended.
The motive of TCP’s variations is to holds some distinct
criteria for example:

 Traditional TCP has turn into Tahoe TCP [6].
 Enhances new mechanism by TCP Reno [7] known

as Fast Recovery to TCP Tahoe [2].
 TCP New Reno [8] uses TCP Reno’s latest

retransmission technique [3].
 TCP Sack [9] allows the receiver for the

specification of numerous additional out-of-order
received data packets [4].

 New retransmission and congestion control schemes
proposes by TCP Vegas.

 TCP Fack is basically forward acknowledgement
with TCP Reno [5].

This article describes TCP Algorithms and TCP
Variants respectively and finally describe comparisons
of all variants.
The order of rest of the paper is: Transmission Control
Protocol Algorithms and TCP Variants describe by

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

80

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

section 2 & 3 respectively. Section 4 describes the
comparisons of all described variants.

2. Algorithms of TCP

Demonstration of different algorithms depending upon
slow Start (Exponential Increase), congestion avoidance
(Additional Increase), fast retransmission, fast recovery,
retransmission, congestion control and selective
acknowledgment (SACK) approaches are discussed
below.

2.1 Slow Start (Exponential Increase):

Slow Start [10] is a scheme for transmission rate control
used by sender. This is also called flow control on
sender based. This algorithm is directed for every TCP
connection’s establishment where maximum available
bandwidth is main purpose of it where it can send data
without making the network congested. To understand
this, TCP sender is forces by slow start to transfer data
at a rate of slow sending and quickly increasing it until
the existing bandwidth is supposed to be found between
the hosts.
 A new window to the sender's TCP is provided by this
mechanism which is presented in [11] known as the
congestion window (cwnd).
Contention Window’s size is increases through one
segment, every time when an acknowledgment is
received that permits the sender for two new segments
sending. Thus this approach causes the contention
window’s exponential growth.
Sometime congestion window become too big for that
network which changes the conditions of network such
as dropping of packets which causes to generate a sender
side timeout and thus the TCP interpret the lost packets
as congestion indication and come in congestion
avoidance.

2.2 Congestion Avoidance (Additional Increase):

During the stage of data transfer a mechanism of Slow
Start is used. During Slow Start, many packets are drop
due to congestion. Therefore to slow the rate of
transmission a mechanism of Congestion Avoidance is
used. A combination of Slow Start and congestion
avoidance [10] (two different approaches) is used to do
again data transfer which has lost.
TCP indicate jamming by packet loss and through this
the mechanism of Congestion Avoidance is invokes by
TCP [11].
A new TCP variable (ssthresh) is introduced that means
a slow start threshold which is used by TCP to find if

there conducted a slow start and congestion avoidance
mechanism.

2.3 Fast Retransmission:

In Fast Retransmission [10], if a section is received that
is not in an order then Transmission Control Protocol
produces duplicate acknowledgment which is instantly
sent from receiver to the sender to signifying the arrival
of out-of-order segment and also signifying the supposed
segment that should be received. In the meantime, this
is not necessary to know the causes of the duplicate
acknowledgment that may be lost segment or segment’s
reordering. Therefore before segment’s resending,
sender have to waits for three duplicate
acknowledgments. An advantage of this approach [11]
is that for the expiry of retransmission timer the
Transmission Control Protocol does not h wait. So for
lost segment, three duplicate acknowledgments is an
assumption of good sign.

2.4 Fast recovery:

After retransmitted the missing segment, the TCP start
the fast recovery [10, 11] algorithm up until a unique
acknowledgement comes. The fast recovery is an
enhancement of the algorithm of congestion control that
even makes the higher throughput sure in adequate
congestion and the duplicate acknowledgements are
generated by receiver side when another segment is
reached to it. Therefore receiver's buffer save this
segment and no network resources is consume which
means in network the flow of data is running and
Transmission Control Protocol is unwilling to move the
data in segment of slow start to instantly reduce the flow.
Therefore instead the segment of slow start, the
congestion avoidance segment is high as soon as the
algorithm of fast retransmission is accomplished.

2.5 Retransmission Algorithm:

The Retransmission Algorithm [12] maintains the track
of every segment that was transmit and also computes
an estimation of the RTT that how much time it takes to
get back for the acknowledgment. Every time when
there comes a duplicate acknowledgement then this
algorithm checks if the transmission time of current
time segment is greater than RTT Estimate, then
without waiting for 3 duplicate acknowledgements or
coarse timeout it instantly resends the segment [12].
Therefore it becomes unable to sense drop packets once
it has a small window and can’t receive enough
duplicate acknowledgements. When a unique
acknowledgement is received then resend the missing

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

81

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

segments. If unique acknowledgement (non-duplicate) is
the first or second acknowledgement after a fresh
acknowledgement then timeout value is check and if the
timeout is exceed then without waiting for duplicate
acknowledgment it re-transmits the segment [12].
Through this the multiple packet losses sense by TCP
Vegas.

2.6 Congestion control Algorithm:

In TCP, four unique congestion control algorithms are
used to achieve the Congestion control algorithm [11] in
which every algorithm give its best input by influencing
from other three algorithms simultaneously.
1. Slow Start (SS) also called operating mode which
avoid from presenting congestion.
2. Congestion Avoidance (CA) mode in which without
causing under congestion CA make it best to maintain
the large amount of data for TCP.
3. Fast Retransmit
4. Fast Recovery
Third mode and fourth mode are very close to each other
and almost grouped together which present a solution
for long delays in TCP. The last two algorithms help to
detect the lost packets and resend them quickly.

2.7 Selective Acknowledgment (SACK):

When TCP miss its acknowledgements then it causes
the dropping of multiple segments which also affect the
overall throughput by reducing it. Therefore SACK 13]
is used to improve this act by updating the sender about
every successfully reached segment though receiver.
Through this sender only send loss segments. If
irregular packet’s blocks are received then it also
permits the receiver to acknowledge. The number of
SACK blocks are also specify by acknowledgment
where the starting and ending sequence numbers of an
adjoining range is used to convey the SACK block
which is correctly receive by the receiver.

3. Evaluation and Description of Variants of
TCP

3.1: Evaluation of Variants of TCP

Figure 1: Evaluation of Variants of TCP part (a)

Figure 2:Evaluation of Variants of TCP part (b)

The different variants of TCP are depicted and
evaluated in chronological order in Figure1 and
Figrue 2.

3.1 Description of variants of TCP

A detailed description on variant of TCP with their
problems is providing in this section.

3.2.1 TCP Tahoe:

Tahoe [14] is based on Packet’s conservation principle
in which the packet should be taken out to insert in the
network if a connection is running on the capacity of
available bandwidth. It also denotes the algorithm of
congestion control. The size of window is 1and TCP will
be in phase of slow start when data transmission is start.
When timeout the packet loss is detected and window
size will become 1. Slow start thresh also become half of
current window.
To reflect the network capacity, congestion window also
manage by Transmission Control Protocol [3].

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

82

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

 There are some problems that should be solved to
gain and maintain the stability.

 Available bandwidth determination.
 Make sure that stability is maintained.
 How to behave when congestion occur?

Tahoe is implemented by adding new and altered
procedures such as Slow Start, Congestion Avoidance
and Fast Retransmit [6]. An improvement in these
algorithms is the modification of round-trip time
estimator that sets the value of retransmission timeout [4,
5]. Because of the waiting timeout, Tahoe is not exactly
appropriate for product links of high bandwidth.

Problems: For the detection of packet loss Tahoe takes
break of complete timeout. Tahoe is unable to send
acknowledgment quickly due to cumulative
acknowledgements sending which means a “go back n”
scheme is follow here. Tahoe waits for timeout and
pipeline become empty whenever a packet is drop which
introduces high bandwidth delay and a large amount of
cost due to it.

3.2.2 TCP Reno

Reno [3, 14] is introduces to overcome the drawbacks of
TCP Tahoe. For lost packets detection and don’t make
empty the whole pipe line when packet drop occur, Reno
make some intelligence over Tahoe. It makes the
immediate received packet acknowledgement
compulsory. Through this it prevents the packet loss.
Receiving of Several duplication acknowledgements is
the indication of packet loss which means the enough
time has been pass even a longer path is taken by data.
Therefore an algorithm of Fast retransmission is
introduces by Reno which say when there come 3
acknowledgements then consider that packet is lost.
Main algorithm is described below:
Receiving of three duplicate acknowledgements indicate
the lost segment. Therefore segment is quickly resent
again and enter “Fast Recovery”.
“ssthresh” become half of the current window’s size and
same the value is contention window have.
Increase contention window’s value by one on the
receiving of every duplicate acknowledgement. If the
value of contention window is increases or become high
than amount of data in route, then new segment is sent
otherwise wait is prefer.

Problems: When packet losses are small then Reno
performs fine over TCP. Reno performance becomes
unwell when several drop packets fall in one window,
because only single drop packet can be sense by it. In

case of multiple packet loss, if one report is come about
one lost packet then for the acknowledgement of 2nd
packet lost it have to wait until reached report of the
first segment is come. Another drawback of Reno is of
small window size which causes to never receive many
duplicate acknowledgements for fast retransmission.
Therefore have to wait for a long time. The algorithm of
fast recovery is optimized in single packet loss situation.

3.2.3 TCP Lite:

Lite is a facility, offers a transport procedure which
disturbs the TCP to diminish overhead exists in session
of management where data cannot be received and
transmitted. Lite removes the pure TCP protocol’s data
units used in arrangement and acknowledgement
whereas keeping integrity, order, reliability and security
of the old TCP. Big window and defense against the
wrapped sequence numbers is used by TCP lite.

Problems: The Lite performs above TCP similar to TCP
Reno. But when the size of window grows, it has some
issues to retain them.

3.2.4 TCP New Reno:

TCP New Reno [15] is a minor alteration above RENO
which is able for multiple packet losses detection and
That’s why in the case of numerous packet losses it is
much efficient than TCP RENO. Similar Reno when
New-Reno gets multiple duplicate packets then enters
Fast Retransmit. But TCP NEW RENO disables the
issue of reducing the CWND faced by Reno several
times.
The phase of Fast Transmit is similar as in Reno. There
is variance in the stage of Fast Recovery that permits for
several Re Transmissions in TCP NEW RENO. Every
time it records the maximums segment that is really
outstanding when NEW RENO enters in fast recovery.
The phase of fast recovery proceeds same like in Reno,
conversely when a fresh acknowledgement is got. In this
case there are two cases; when we entered fast recovery
then if it acknowledges each outstanding segment its
means it leavings the Fast Recovery mechanism, fixed
CWND is to ssthresh and remains Congestion
Avoidance as Tahoe.
If there is incomplete acknowledgement then it assumes
that the next segment in the line was vanished, then
resends that segment, received duplicate
acknowledgement set to zero and exoduses an algorithm

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

83

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

of Fast Recovery when all windows’ data is recognized
[15].

Problems: New Reno has a downside because one RTT
it takes to sense every packet loss. Round-trip Time is
used until each lost packets has been retransmitted from
the window.

3.2.5 The TCP Sack:

Selective Acknowledgments (SACK) [16] is an
extension of Reno which is used to overcome the flaws
face by RENO and New-Reno, such as multiple drop
packets’ detection and per RTT the retransmission of
many lost packet. TCP SACK maintains the RENO’s
slow start and fast-retransmits algorithms. If packet loss
is not sensed by the altered mechanism then Sack also
has the Tahoe’s coarse grained timeout. TCP SACK
makes inquiries for the segments that is not
cumulatively recognized but should be selectively
accepted. Therefore all acknowledgements have a block
that defines the recognized segments. Each time when
sender move in Fast Recovery then it prepares a flexible
pipe that is an estimation outstanding data in the
network and set the Contention window to half of the
existing size. When the window size goes lesser than
Contention window then it checks the non-received
segment and transmits that segment. It sends a new
packet if no outstanding segments exist [3]. As a result
in one RTT many lost segments can be sent.

Problems: TCP SACK needs those segments which are
not recognized cumulatively but must be recognized
selectively. Every acknowledgement has a block that
defines the recognized segments. The major issue of
SACK is not the delivery of its presently selective
acknowledgements for implementation by the receiver.
This also faces the identical problems with multiple
losses.

3.2.6 The TCP Vegas:

Vegas [17] are an alteration of TCP Reno, which is
dissimilar to TCP Reno in such a way that
 The new Re Transmission approach is used.
 A better Congestion Avoidance algorithm which

handles the buffer occupies.
 An improved Slow Start algorithm.
 This solves the problem of coarse gain timeout.

Vegas contain an altered retransmission scheme
which founded on RTT’s fire-gained measurements
and new algorithm for Detection of Congestion in
Slow Start and Avoidance from Congestion.

Vegas improved the Reno’s retransmission algorithm
which results in poor estimates due to coarse grained
timer use for RTT estimation. Therefore, Vegas save the
system clock every time a packet is sent. When there an
acknowledgement is get, the Vegas compute RTT and
use this for exact approximation decision to resend in
the two situations which are described below;
1. When it gets a duplicate Acknowledgement then
Vegas checks it to see if RTT is bigger than timeout. If
it is greater than tome out, then it quickly resends the
packet short of waiting for the third duplicate
Acknowledgement.
2. When there a non-duplicate Acknowledgement is
received, then after a retransmission if it is the 1st or
2nd Acknowledgement, to check that RTT is greater
than timeout Vegas checks it again. If it is greater than
TCP Vegas resend the packet.

Problems: If sufficient buffer exist in routers which
specify which congestion avoidance algorithm of TCP
Vegas can perform greater throughput and result of
faster reply time. As burden increases or the number of
router buffer decreases, congestion avoidance algorithm
of TCP Vegas is not as in effect and start to act like
Reno. In use of router buffer TCP Vegas are fewer
violent than Reno because TCP Vegas is restricted. In
conclusion the congestion detection mechanism of TCP
Vegas rest on the correct value for Base RTT.

3.2.7 TCP Westwood:

TCPW is an alteration of sender-side-only to New Reno
which proposed towards efficiently grip the product
paths of large bandwidth delay with potential packet loss
through broadcast. Westwood protocol is based on a
simple TCP source protocol’s alteration for faster
recovery which is implemented by setting the threshold
of slow start & values of congestion window which
consequence from operative, however congestion is
knowledgeable. Therefore, TCP Westwood tries to make
a more “knowledgeable” decision in compare with Reno
that mechanically splits the congestion window after
three duplicate Acknowledgements. Similar to Reno,
TCP Westwood cannot differentiate among overflow
losses of buffer and the random losses. But, in the
existence of random losses, the Reno reacts excessively,
thus diminishes the window by half.

Problems: TCPW cannot differentiate between overflow
of buffer and the random losses. For data packet or
Acknowledgement, TCPW does not provide fast
recovery algorithm

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

84

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

3.2.8 TCP Fack:

Improvement in SACK through Forward
Acknowledgement is known as TCP FACK [16]. The
use of FACK is just about same like TCP SACK but
creates a little improvement estimated to it. This uses
TCP SACK for efficiently evaluation the data’s amount
in transit [16]. Thus, TCP FACK announces an
improved mode to split the window in case of congestion
detection. When Contention Window is split instantly
then sender pause sending for some time and then starts
again when sufficient data has gone from the network.
Here one RTT can be ignored when window is
diminished step by step [16].Once there happens
congestion then window would be split according to the
multiplicative reduction of the accurate Contention
Window. In the meantime the sender detects jamming,
after it at least one RTT occurred. In between that RTT
if it was in slow start manner then present Contention
Window almost will be double than the Contention
Window when congestion happened. So, in this
situation, Contention Window is first split to evaluate
accurate Contention Window which further ought to be
reduced.

Problems: The Fack delivers congestion avoidance and
fast retransmission algorithm, it faces many
circumstances for recovery and it can’t be easily
implement.

4. Comparison of Variants of TCP

4.1 TCP Tahoe:

Tahoe can detect and resend the lost packets quicker
than timeouts in Tahoe. This has less re-transmission
and does not un-fill the entire pipe when it drops the
packets. TCP Tahoe is fine on congestion avoidance and
uses the network resources more efficiently due to
altered congestion avoidance algorithm and the slow
start procedures that calculate arising congestion as well
as correctly measures the existing bandwidth. It is not
more appropriate for those products links who consume
high bandwidth due to waiting timeout.

4.2 TCP Reno:

Vegas banned half timeouts of coarse grained of Reno as
it identifies and retransmits many lost packet before the
break happens. It can transmit quicker because at all
times, it does not have to wait for three duplicate packets.
In Reno, the window of congestion does not decrease

gradually. It has advantage of congestion avoidance and
bandwidth utilization over TCP Tahoe. Due to several
packets dropping from the data’s window of, it faces the
performance issues.

4.3 TCP Lite:

There is not advantage of TCP Lite over TCP Reno; in
fact it is same as TCP Reno. It senses and resends many
missing packets before the break happens. It suffers the
performance problems in face of large amount of
dropped packets. TCP Lite offers large window and
defense in contradiction of the option of the wrapped
sequence numbers that causes the better congestion
avoidance and bandwidth utilization and that’s why take
an advantage over Tahoe and Reno, but similar to Reno
TCP Lite does not decrease the congestion window too
small for congestion avoidance. In case if there come
packet loss in the network then it proposes the better
way for fast retransmission.

4.4 TCP New-Reno:

TCP New Reno does not require waiting for 3duplicate
acknowledgements before re sending a lost packet and
that’s why avoids a lot of the coarse grained timeouts.
Its congestion avoidance algorithms are very efficient. It
also utilizes the network resources in a very efficient
way. There are less retransmits due to its altered
algorithms of congestion avoidance and slow start
algorithm.

4.5 TCP Sack:

There is not such an advantage of TCP Vegas over. TCP
Vegas provides better consumption of bandwidth and
less significant congestion than SACK. It uses packet
loses for congestion indication which make it more
stable than SACK.
Therefore sender constantly increases the sending rate
up to congestion. There is another disadvantage of
SACK is that SACK which is advantage of Vegas that
SACK is incorporate in current TCP.

4.6 TCP Vegas:

TCP Vegas offers fast recovery algorithm to overwhelm
the packet loss problem and congestion too. It uses
better congestion avoidance algorithm which controls
the buffer occupies. It uses an improved retransmission
schemes that are based on the RTT’s Fire Gained
measurements to solve the coarse gain timeout.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

85

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

4.7 TCP West-wood:

TCP Westwood uses Fast Retransmission algorithm to
handles dynamic load and huge bandwidth delay routes.
When congestion occurs in the network then it uses slow
start threshold and algorithm of congestion control.
There is an advantage of TCP Westwood that it has
bandwidth utilization and congestion avoidance over
network problems.

4.8 TCP Fack:

TCP FACK has an advantage over TCP Westwood by
providing a better congestion detection ways in network.
This performs estimation for right congestion window
which should be reduced further. When the window is
gradually reduced then RTT can be avoided. When there
detect congestion then TCP FACK presents an improved
way to share out the window.

Table no. 1: Comparison of TCP Variants

PARAMETERS
Procedures

TCP Variants
TCP
Tahoe

TCP
Reno

TCP
Lite

TCP
New-Reno

TCP
Westwood

TCP
SACK

TCP
FACK

TCP
Vegas

Congestion Avoidance Yes Yes Yes Yes Yes Yes Yes IV

Congestion Control No No No No No No NA NA

Slow Start Yes Yes Yes Yes Yes Yes IV IV

Fast Recovery No Yes Yes IV IV IV IV Yes

Fast Retransmission Yes Yes Yes Yes Yes Yes Yes Yes

Retransmission No No No No No No No NA

5. Conclusion

A concise review of existing TCP variants and their
appropriate algorithms are evaluated and define that
which protocol is appropriate for the packets, for the
utilization of link in the congestion network and the
failure of the link causes the disorder in Ad-hoc network
because old TCP deals with each packet losses only due to
jamming not from the failure of link. This review is
achieved and analyzed from the variants of TCP for
instance, TCP Tahoe; TCP Reno; TCP New Reno; TCP
West-wood; TCP Lite; TCP Sack; TCP Fack and TCP
Vegas. Some protocols demonstration their best uses and
some shows bad responsiveness to network varying
situations and utilization of the network. Even though
there are used several protocols and mechanisms but not a
single mechanism can be used that can reduces and
eliminating the congestion and unreliable network’s
nature. In solution for the network’s problems of TCP
protocol, each variant of TCP has its specific advantages

and disadvantages. To cut a long story short, simply
several protocol will be operative depend on the strictures
which are consider as in this review paper. There are
many researches available on these variants but still more
researches can be done towards the establishment of new
protocols. Therefore, this article will help those who want
to explore the work done on these variants and want to
research more in this area.

References
[1] J. Postel, “Transmission Control Protocol”, RFC 793, Sep
1981.
[2] M. Mathis, J. Mahdavi, S. Floyd, A. Roma now.RFC 2018:
TCP Selective acknowledgment options, October 1996.
[3] L.S.Brakmo, L.L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet”, IEEE Journal on
Selected Areas in Communication, vol. 13, 1995.
[4] K. Fall, S. Floyd “Simulation Based Comparison of Tahoe,
Reno and SACK TCP”, 1998.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

86

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

[5] Renaud Bruyeron, Bruno Hemon, Lixia Zhang:
“Experimentations with TCP Selective Acknowledgment”, ACM
SIGCOMM Computer Communication Review, April 1988
[6] Jacobson, V., “Congestion avoidance and control,”
Proceedings of the ACM Symposium on Communications
Architectures and Protocols, Vol. 18, No. 4, pp. 314-329,
Stanford, CA, USA, August 16-18, 1988.
[7] Jacobson, V., “Modified TCP Congestion Avoidance
Algorithm,” end2end-interest mailing list, April 30, 1990.
<URL:
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.>
[8] Hoe, J. C., “Improving the Start-behavior of a Congestion
Control Scheme for TCP,” Annual conference of the Association
for Computing Machinery’s Special Interest Group on Data
Communication (ACM SIGCOMM ’96), pp.270-280,
California, USA, August 26-27, 1996.
[9] Mathis, M., Mahdavi, J., Floyd, S. and Romanow, A., “TCP
Selective acknowledgement options,” IEFT, RFC 2018 (Status
Proposed Standard), 1996. <URL: www.rfc-
editor.org/rfc/rfc2018.txt>
[10] Suhas Waghmare et. al “Comparative Analysis of different
TCP variants in a wireless environment”, 978-1-4244-8679-3/11
©2011 IEEE
[11] W. Stevens, “TCP Slow Start, Congestion Avoidance Fast
Retransmit Algorithm”, IETF RFC 2001, January 1997.
[12] S.Floyd, T.Henderson “The New- Reno Modification to
TCP’s fast Recovery Algorithm”RFC 2582, Apr 1999.
[13] Lawrence, S. Brakmo, Student Member IEEE and Larry L.
Peterson“TCP Vegas end congestion avoidance on a
Global Internet, October 1995.
[14] O. Ait-Hellal, E.Altman “Analysis of TCP Reno and TCP
Vegas”.
[15] A.Gurtov and S. Floyd, “Modeling wireless links or
transport Protocols,”ACM SIGCOMM, April 2004.
[16] B. Qureshi, M. Othman, Member, IEEE, and N. A. W.
Hami “Progress in Various TCP Variants”, IEEE, February
2009.
[17] M. Mathis, J. Mahdavi,”Forward Acknowledgement:
Refining TCP Congestion Control” in Proceedings of ACM
SIGCOMM, 1996.

Ms.Komal Zaman is studying as research student under the
enrollment of MS (IT) program in University of Gujrat, Pakistan
since 2013. She did graduation with first division in the field of
Information Technology from university of Punjab, Pakistan in
2008. She has been working as Associate lecture in university
of Gujrat. Her research interest spans the area of QoS issues and
routing challenges, especially in mobile ad-hoc networks.

Dr. Muddesar Iqbal has done PhD from Kingston University
UK in the area of Wireless Mesh Networks in 2009. He has
been
serving as Associate Professor in Faculty of computing and
Information technology, University of Gujrat, Pakistan since
2010. He won an Award of Appreciation from the Association of
Business Executive (ABE) UK for tutoring the prize winner in
Computer Fundamentals module. He also received Foreign
Expert Certificate from State Administration of Foreign Experts

Affairs, People’s Republic of China in 2008 against his research
collaborations in China. He won another Award of Appreciation
from ABE UK for tutoring the prize winner in Information
System Project management module in 2010. He has published
more than 20 papers, all in International Journals and
proceedings. His research interests span the area of mobile ad
hoc routing and security issues, analysis and control of wireless
networks, resource management including packet scheduling,
and wireless sensor networks.

Mr.Muhammad Shafiq did MS (CS) from UIIT, PMAS Arid
Agriculture University Rawalpindi, Pakistan in 2010. He
received MIT. degree from University of the Punjab in 2006. He
has been serving as Lecturer in Faculty of Computing and
Information Technology, University of Gujrat, Pakistan since,
2010. He also served as visiting lecturer in the Federal Urdu
University, Islamabad, Pakistan for the period of one year. He
has published more than 10 papers, in national and International
Journals and proceedings. His research interests span the areas
of routing, security, QoS, resources and mobility management
issues of communication networks, especially MANETS and
VANETS.

Azeem Irshad has been doing Ph.D from International Islamic
University, Islamabad, after completing MS-CS from PMAS
Arid Agriculture University Rawalpindi and is currently serving
as visiting lecturer in AIOU. He has published more than 10
papers, in national and International Journals and proceedings.
His research interests include NGN, IMS security, MANET
security, merger of Ad hoc networks with other 4G technology
platforms, multimedia over IP and resolving the emerging
wireless issues.

Mr.Saqib Rasool recently has done MS (IT) from National
University of Science and Technology (NUST) in 2013 and did
his graduation in computer Science from University of Gujrat in
2010. He has been serving as Associate Lecturer in Faculty of
Computing and Information technology, University of Gujrat,
Pakistan since 2011. He also served as professional developer in
CONNEKT labs of SEECS-NUST. He also served in the
research project of Semantic Web Application Firewall (SWAF)
of NUST. His research interest spans over the area of research
and development of communication and distributed systems.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

87

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

