
Designing Expert System for Detecting Faults in
Cloud Environment

Marzieh Shabdiz1, Alireza Mohammadrezaei 2 and Hossein Bobarshad3

1 Engineering Department, Tarbiat Modares University
Tehran, Iran

m.shabdiz@modares.ac.ir

2 Engineering Department, Tarbiat Modares University
Tehran, Iran

a.mohammadrezaei@modares.ac.ir

Abstract
Many fault detection techniques for detecting faults
in rule bases system have appeared in the literature.
These techniques assume that the rule base is static.
This paper presents a new approach by designing
Expert system for detecting faults in dynamic
environment, such as cloud. Cloud resources are
usually not only shared by multiple users but are also
dynamically re-allocated per demand. Therefore,
rules may be added/deleted in response to certain
events happening in the integrated system being
controlled by the rules. The approach makes use of
spanning trees and Complementary sets to check a
dynamic rule base for different kinds of faults
underlying directed graph and devises a new method
with scripting language on web based tools. This is
performed as rules are being added to the dynamic
rule base one at a time without the need to rebuild the
structures and update rules and paths by expert
system.
Keywords: Dynamic Rule bases, Rule base Faults,
Spanning Tree, Cloud Environment, Expert System.

1. Introduction

Developing algorithms to detect rule-based systems
against different kinds of faults within the context of
large rule–based systems have attracted many of
research efforts due to the important role of rule-
based systems in various cloud environment,
including Expert Systems (ESs), active database
systems, and Information Distribution Systems
(IDSs) to name a few [1,12].
One of the main concepts of cloud environment is
providing almost unlimited resources for a given

Service, automatically and dynamically, in a fully-
virtual environment. Networks get new devices added
to them, but they are seldom re-architected unless a
completely new network is purchased. Networks
often grow organically like spanning trees. As new
nodes are added to a LAN environment the spanning
tree evolves over time. Therefore, other nodes and
routers in networks should be aware of this growth.
One of The challenges of supporting routes in a cloud
environment is resources that could be spread over
multiple locations and using a transparent transport
interconnected mechanism which maintains security
and end-to-end segmentation [3].
If a dynamic rule base is fault free at a certain time,
then deleting rules may generate unreachability
faults, only by making some output vertices
unreachable. Adding/deleting rules affect the rule
chains in rule bases. Such rule bases are common in
active database systems and information distribution
systems, many rules may be added at a certain point
in time and other rules may be deleted at other points
in time.
Where rules are added, as new events occur in the
system. In these events, the effects of errors may
appear in the performance of these systems. Such
faults may cause incorrect or undesired actions.
Sometimes, these effects may be harmless, such as
redundancy that may cause the systems’ performance
to be inefficient. On the other hand, contradiction
faults may lead to incorrect conclusions [11, 12].
However, in such cases the designer must be
knowledgeable of the presence of such faults and
their consequences from the practical point of view.
Many approaches and algorithms for fault detection
have been presented and proposed in the literature.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

133

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

3 Faculty of New Sciences and Technologies, University of Tehran

Tehran, Iran
hossein.bobarshad@ut.ac.ir

The Expert System Validation Associate (EVA)
program was developed at Lockheed [12]. EVA
program was used to check for rule redundancy,
inconsistency and contradiction. A decision-table-
based processor for checking completeness and
consistency in rule-based systems was presented in
[11]. The COVER tool was presented in [8]. The tool
was designed to build upon the best features of earlier
systems. It is used to check rules based on a subset of
first-order logic. A Petri-Net based approach for
verifying rule bases was presented in [2].
A Transition Directed Graph (TDG), which
represents rule sets, was presented in [8, 10]. TDG
was used in the development of a set of algorithms to
detect inconsistency, contradiction, circularity,
Inreach-ability, and redundancy in chained inference
rules. To provide those resources, the complete cloud
architecture must be built with efficient tools,
network, and storage resources [10].
These expert system employed different approaches
for detecting some faults. Based on these approaches
applications have been developed and used to inspect
a rule-based system for known potential faults. This
article covers the most frequent errors and how to
correct them with design expert system into cloud
platform such as Heroku and embedded control
system such as Git and other language relative.

2. Rule-Based Systems Faults

A set of well-known faults that may appear in a rule
Base is presented in [11]:
1) Redundancy/Subsumption:

Two rules conclude the same outcome from the
same input data. A special case of redundancy is
subsumption, where, two rules conclude the
same outcome, but one has additional
constraints, which may or may not be necessary.

2) Contradiction/Conflict:
Two rules conclude Different outcomes from the
same input data.

3) Inconsistency:
An antecedent of one rule is mutually exclusive
to the consequent of such rule (or a chain of
rules).

4) Circularity:
The rule base contains a cycle inference chain,
which may cause a backward-chaining inference
engine to enter an endless loop.

5) Unreachability:
Unreachability occurs if there is no path between
any two given vertices.

3. Expert System and Implementing
Many transformation techniques for rule bases have

Been suggested in the literature. In this paper, subject
essential is implementing expert system on network
and integration systems on cloud platforms.
Heroku is a polyglot cloud application platform. With
Heroku, no need to think about servers at all. Heroku
lets us deploy, run and manage applications written in
Ruby, Node.js, Java, Python, Clojure and Scala.
Git is a powerful, distributed version control system
that many developers use to manage and version
source code. The Heroku platform uses Git as the
primary means for deploying applications. An
application is a collection of source code written in
one of these languages, perhaps a framework, and
some dependency description that instructs a build
system as to which additional dependencies are
needed in order to build and run the application. No
need to make many changes to an application in order
to run it on Heroku. One requirement is informing the
platform as to which parts of application are run able.
We'll use Git to deploy apps to Heroku in one
command. We'll build and run the source application,
handling compilation, dependencies, assets and
executables so we can focus on code. Code pushed to
the heroku remote will be live and running on the
platform.
In this approach, a rule base is modeled as a Petri-
Net where parameter-value pairs corresponding to
places and rules are analogous to transitions. Then
the transition/place relationship modeled in a Petri-
Net can be summarized in the form of an incident
matrix. Decision-table-based processors were
presented in [3]. In the figure 1 you can see this
situation of nodes in Petri-Net model.

Fig. 1 positions of nodes in Petri-Net model.

In this approach, a decision table is created from the
Rules in the rule base systems. A directed-graph-
based approach was presented in [6], where the rule
base is modeled as a directed graph and the process
of anomaly detection is reduced to reachability

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

134

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

among nodes. Each node saves such as separate file
in tree structure of Git. A transition-directed-graph-
based approach, which is similar to is presented with
Simultaneous connections feature in heroku. The
herokuapp.com routing stack allows many concurrent
connections to web dynos [10, 15].
In this paper, we use the transformation technique
where the dynamic rule base is modeled as a directed
Graph as new rules are being added to the dynamic
rule base. In this directed graph, nodes correspond to
Propositions and rule identifiers and edges
correspond to the rules. Each rule has a rule identifier
that in model these nodes appear with MAC address
of devices in networks.
A spanning tree/forest will be devised by using
Kruskal’s like algorithm. Tree structure of GIT
Satisfies this problem. During the operation of the
algorithm, Complementary sets will be generated.
These sets will be used for detecting various kinds of
faults while the dynamic rule base is being updated.
Spanning Tree's job is to prevent loops from forming.
It does this by learning about sub-optimal paths to the
root and placing these less desirable links into
blocking mode. If there are multiple parallel paths
between nodes, then one of them would be selected
to be in blocking mode to prevent a loop between the
two nodes. This leaves all nodes in the environment
using the default root priority. If all nodes have the
same root priority, the node with the lowest MAC
address will be selected for adding. More complex
situations can arise. This would make having
multiple links only good for failover for the primary
link and not provide increasing bandwidth along that
path. The Merge Conflicts feature in Git tool can
solves them. That means every edge will pull in the
state of the path file on the other tree into the working
tree, dynamically. If occurs conflicting in the same
file, Git will knowing it and commits again after
resolving them. Due to the fact that spanning trees
are not unique, such a devised rule base may not be
unique. In this case, for every tracked file in tree, Git
records information such as its name, number, type,
conditions, creation time and last modification time
in a file known as the index. To determine whether a
file has changed, Git compares current states with
those cached in the index. If they match, then Git can
skip reading the file again. In addition, for detecting
fault pattern with rules, we could routes paths with
routing feature in Heroku because inbound requests
are received by a load balancer that offers HTTP and
SSL termination from here they are passed directly to
a set of routers. The routers are responsible for
determining the location of nodes and forwarding the
HTTP request to one of them. A request’s path from
the end-node through the Heroku infrastructure to the
application allows for full support of HTTP 1.1

features such as chunked responses, long polling, and
using an a sync web server to handle multiple
responses from a single web process [3, 7, 15].
Heroku executes applications by running a command
specified in the Procfile, that is written whit ruby.
Also, rules saved in file with extension .rb in git
branch. The looping and conditional constructs have
the same interpretation as in ruby language. Ruby is
an interpreted scripting language for quick and easy
object-oriented programming [14].
Features of ruby are:
 Ability to make operating system calls directly
 Powerful string operations and regular

expressions
 Immediate feedback during development
 Variable declarations are unnecessary
 Variables are not typed
 Syntax is simple and consistent
 Memory management is automatic
 Everything is an object
 Classes, inheritance, methods, etc.
 Singleton methods
 Mix in by module
 Iterators and closures

Therefore, the focus here is on adding new rules to
the dynamic rule base and designing Expert system.
Expert systems are part of a general category of
computer applications known as artificial
intelligence. To design an expert system, one needs a
Knowledge engineer, an individual who studies how
human experts make decisions and translates the
rules into terms that a computer can understand. An
expert system has a unique structure, different from
traditional computer programming [5]. Components
of Expert system and their relationships as shown in
Figure 4.

Fig. 2 Component of Expert System

User Interface

System Monitoring Inference Engine

Knowledge Base Analysis app.

Resault.exe

Resault Access.exe

Fact 1

Fact n

Input

Output n

Output 1

File1.rb

File2.proc

User

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

135

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

It is divided into two parts, one fixed, independent of
the expert system: the inference engine, and one
variable: the knowledge base.
An Expert system stores data in its knowledge base
as production rules. To query the system involves a
consultation being run; whereby the user is asked
questions via the user interface until eventually
advice is provided. An expert system shell (Git Bash)
represents data by storing it in its knowledge base as
a series of production rules [1, 19].
In Figure 3 we associate scenarios that have access to
the public cloud with all requirements to input expert
system. The scenarios are used for experimental
environment and experimental operations. They are
translated into parameters for routing simulation. The
metrics are used to measure performance variability
of particular cloud services and setting parameters for
cloud environment simulation.

Fig. 3 Association Expert system with cloud

These are many requirements for input expert system
such as condition and position nodes. The
requirement is translated into inputs to the expert
system.
When create an application on heroku platform, it
associates a new git remote, typically named Heroku,
with the local git repository for application written in
ruby. Deployment then is about using git as a
transport mechanism, moving application from local
system to Heroku. When the Heroku platform
receives a git push, it initiates a build of the source
application. To build mechanism is typically
language specific, such as ruby [15, 16].

4. Fault Detection Algorithm

A spanning tree of an undirected graph G is a tree
Formed from graph edges that connects all the
vertices of G. formally, let G = (V, E) be an
undirected connected graph. A sub graph T = (V, E)́
of G is a spanning tree of G if T is a tree. An
interesting property of a spanning tree is that it
represents the minimal subgraph G ́of G such that V
(G´) = V (G) [10].
By minimal, we mean the one forest is new rules are
being added to the dynamic rule base. Initially, there
are |V| single-node trees. Adding an edge merges two
trees into one. It turns out to be simple to decide
whether edge (u, v) should be accepted or rejected.
The appropriate data structure or approach is the
union/find algorithm. This approach, as presented in
DFP_err_Detection algorithm in below.

Algorithm 1. DFP _err_Detection
Require: r, FP, C, R, S
 1: Chk _Redundancy&Circularity(r, FP, C, R, S)
 2: If r contains exclusive vertices then
 3: Chk _Inconsistency&Contradiction(r, S)
4: end If

 5: Chk _Unreachability(r, S)

DFP_err_Detection algorithm checks the current
Rule base when a new rule is added as follows:
1.It calls the algorithm Chk_Redundancy&
Circularity(r, FP, C, R, S) to check if it causes a
redundancy or circularity fault pattern. In this call, r
is the new rule, FP is the current fault free dynamic
rule base, C is the set of circularity fault patterns, R is
the set of redundancy fault pattern, and S is the
Complementary sets. This gives algorithm 2.

Algorithm 2. Chk_Redundancy&Circularity
Require: r, FP, C, R, S
 1: for all edges comprising rule r do
 2: Choose the next edge <u,v>
 3: Delete <u, v> from r
 4: u.set = find (u, S), v.set = find (v, S)
 5: if u.set <> v.set then
 6: Add <u, v>, set.union (S, u, v) {to FP}
 7: else if find.path(u, v, S) == ’C’ then
 8: Add r to C {cycle in the directed graph}
 9: else Add r to R {cycle in the undirected graph}
10: end if
11: end for

2. It checks if the new rule r contains exclusive
Vertices, then calls the algorithm Chk_Inconsistency
& Contradiction(r, S) to perform this check as shown
in algorithm 3.

Test on Heroku
platform

Evaluation Scenarios:
Vary geographical location of client
Repeat experiment of different time
Use different service instance
Evaluation Metric:
…

Fault Pattern

Output

Deploy

Requirement

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

136

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Algorithm 3. Chk _Incosistency&Contradiction
Require: r, S
 1: for each vertex v in r do
 2: if v is an exclusive vertex then
 3: root.v = find (v, S)
 4: root.vp = find (vp, S)
 5: if (root.v == root.vp) then
 6: while (S[root.v]!=0 && S[root.v]!=root.vp)
 7: root.v = S[root.v]
 8: end while
 9: end if
 10: if (S[root.v] == root.vp) then
 11: Display “r causes Inconsistency”
 12: else Display “r causes Contradiction”
 13: end if
 14: end if
 15: end for

3.The algorithm calls the Chk_Unreachability (r, S)
to check for potential unreachability faults with
algorithm 4.

Algorithm 4. Chk _Unreachability
Require: r, S
 1: for each pair of vertices (x, y) in r do
 2: root.x = find (x, S)
 3: root.y = find (y, S)
 4: if (root.x == root.y) then
 5: while (S[root.x]!=0 && S[root.x]!=root.y)
 6: root.x = S[root.x]
 7: end while
 8: if (S[root.x] == root.y) then
 9: Display “r causes Unreachability”
 10: end if
 11: end if
 12: end for

The set.union (S, r1, r2) algorithm implemented by
(S[r2] = r1) maintains the direction of the edges in
the original graph, by using the find algorithm as
shown in algorithm 5. Also it specifies the root of the
set to which a vertex belongs.

Algorithm 5. Find
Require: r, S
 1: If (S[x] <= 0) then
 2: Return x
 3: else
 4: Return (find(S[x], S))
 5: end if

To determine whether an edge <x, y> creates a cycle
in graph, the algorithm find.path, as shown in
algorithm 6, can be used to check. If two nodes x and
y are on the same path in a certain Complementary
set S. If x is reachable from y, then they are on the
same path and adding an edge <x, y> does not create
a cycle. However, it indicates that there is another

path that connects x to y. Thus there is a redundancy
fault pattern. On the other hand, if x is not reachable
from y, then x and y are not on the same path and
adding an edge <x, y> creates a real cycle. Thus, this
is a circularity fault pattern.

Algorithm 6. Find_path
Require: x, y, S ,R, C
 1: while (S[x] != 0 & S[x] !=y)
 2: x = S[x]
 3: end while
4: If (S[x] == y) then

 5: Return R
 6: else
 7: Return C
 8: end if

As mentioned earlier, edges between nodes are paths
so that can be used by buffering features in heroku.
As a result, each router buffers the header section of
all requests, and then delivers them to dyno’s web
server as fast as internal network. The dyno is
protected from slow clients until the request body
needs to be read. If need to protection from clients
transmitting the body of a request slowly. This will
have the request headers available to make a decision
as to when to drop the request by closing the
connection at the dyno [13, 15]. This will prevent the
creation of duplicate path and redundancy.
The process of detecting various types of faults by
Formulating faults as reachability problems in the
graph-based representation should be followed by a
checking rule’s identifier vertices that comprise a
certain path in the fault patterns. Although the
formulation gives set of condition for the existence of
various kinds of faults in a rule base, the condition is
not sufficient as long as rules with multiple
antecedents are considered. To deal with this
additional issue, we can estimate the in-degree of the
rule identifier vertices in the paths of the fault pattern
to specify whether a certain fault satisfies the
conditions of representing a real fault. Once these
sets of faults have been considered, it would be
relatively simple to check for the rest of the well-
known faults in a straightforward manner. An
inconsistency fault occurs when an antecedent of one
Rule is mutually exclusive to the consequent of chain
of rules [19, 20]. This means that starting from a
vertex (e. g., A), we can reach to its exclusive vertex
¬A. To check for this kind of anomaly, we first
consider the set of exclusive vertices, and then we
need only to check whether the exclusive vertices are
in the same Complementary set and there is a path
between them. A contradiction/conflict fault pattern
occurs when two rules conclude different outcomes
from the same input data. This means that starting

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

137

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

from one vertex /proposition (e. g. A) We can reach
to two exclusive vertices (e. g., C and ¬C). To check
for this kind of fault, we first determine the set of
exclusive vertices, and then we only need to check
whether the exclusive vertices are in the same
Complementary set and none of them is the root of
the set. If they are in the same set and none of them is
a root, then there is a contradiction anomaly,
otherwise there is no contradiction anomaly.
Unreachability faults occur if there is no path
between any two given vertices. To check for that,
we first specify whether the two vertices are in the
same Complementary set or not. If true, we
determine whether there is a path between them, and
in this case there is no unreachability anomaly. The
benefit of our approach is its ability to detect faults as
the dynamic rule base is being updated. If a rule r is
added to the dynamic rule base, then the new
dynamic rule base can be verified against various
faults without rebuilding any structures.

5. Algorithm Computational Complexity

DFP_err_Detection algorithm is a variation of
Kruskal’s spanning tree algorithm without sorting.
Therefore, it has a worst-case complexity of
O(nlogn), where n is the number of rules being
added to the dynamic rule base.
It calls Chk_Inconsistency& Contradtion algorithm n
times. The for loop for the edge components of each
rule is assumed to be constant with a complexity of
O(1). The complexity of find is O(logn).Thus, the
worst-case complexity of checking for all redundancy
and circularity faults is O(nlogn). Also this algorithm
checked inconsistency and contradiction fault
patterns with O(logn) complexity. Finally, the worst-
case complexity of checking for unreachability faults
is O(n). Our approach improves a complexity over
Petri-Nets approach, where it complexity for
detecting inconsistency and redundancy is O (n2)
[2, 11].

6. Experimental Results

Generally, an empirical study is an integral part of
the analysis of algorithms. To study the experimental
Complexity of our algorithms, the fault detection
algorithms were implemented in ruby and executed
on heroku platform. Heroku treats logs as streams of
time-ordered events, and collates the stream of logs
produced from all of the processes running in all
dynos, and the Heroku platform components, into
the Logplex a high-performance, real-time system for
log delivery. Domains and DNS configuration feature
adds experimental WebSocket support to our

herokuapp.com domain, custom domains and custom
SSL endpoints and Maintaining multiple
environments. Also, each router maintains an internal
per-app request queue. When processing an incoming
request, a router sets up an 8KB receive buffer and
begin reading the HTTP request line and request
headers. It could be sent up to 1MB response in size
before the rate at which the client receives the
response will affect the dyno even if the dyno closes
the connection, the router will keep sending the
response buffer to the client. Heroku lets us run
application with a customizable configuration and
ruby is best choice in this case. Also, in this paper,
we used git to keep data in the .git/objects
subdirectory. Git heuristically ferrets out renames and
copies between successive path files and determine
whether a file has changed, Git compares its current
status with those cached in the index. If they match,
then Git can skip reading the file again [3, 9, 7, and
15]. Some of factors to choose solution in designing
expert system are presented in table 1.

Table 1: The main factors in choosing solution

Also, we added rules, A number of added rules
generate a set of faults, and the algorithms detected
all these faults. A performance profile, which
represents the amount of time the algorithms

Factors
Heraku Git Ruby

Logging and
monitoring

Merge Conflicts interpreted
scripting
language

HTTP routing Secret Source quick and easy

Domains and
DNS

configuration

Ultimate
Backups

object oriented
programming

Timeouts
Light-Speed

Multitask
multiple precision

integers

Keep - alive
Branch

Wizardry
exception

processing model

Routing Dirty Work dynamic loading

Request
distribution &

Request
queuing

Quick Fixes threads

Simultaneous
connections

Remote
Branches &

Trees

Iterators and
closures

Request
buffering

Integrity feedback

Memory &
swap, CPU

load averages

Intelligence Mix in by
module

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

138

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

consume. This has been compared with the Petri Nets
algorithm. The performance measurements have
shown in table 2. That our approach outperforms and
Faster than the Petri Nets approach.

Table 2: Evaluation Metric

A set of 4 test cases, consisting of 10, 100, 500, and
1000 rules were considered. Each test case uses a
randomly-generated set of rules with a number of
faults resulting from the random generation of the
rule sets.
The result of each case is plotted for our approach
and the Petri Nets approach as shown in Figure 4.

9.0009765
34.0007632

154.980768

376.0005631

0.00456789
0.0089

79.0000876

108.0673211

0

50

100

150

200

250

300

350

400

10 100 500 1000

T
im

e
(m

s)

RulesPetri-Net Approach

our Approach

Fig. 4 Result of Comparison Approaches

The performance measurement confirms the earlier
theoretical analysis of the various algorithms. Using
the timing data, the shapes of the curves are
determined.

7. Conclusions

A new approach, based on spanning trees for
verifying dynamic environment is presented. The
approach uses an algorithm for planning Expert
System that checks for various fault patterns in cloud
platforms and generates patterns. Addition, an
empirical study, which confirms the theoretical
analysis, is also presented.
Thanks For the listing name of below for support and
encouragement us:

Mr. Amirhossein Mortazavi, Mr. Sam Joseph, Mr.
Hossein Bobarshad, Mr. Mehdi Amiri Kordestani,
Mr. Hossein Jafari Farhani, Mr. Hossein Shabdiz .

References
[1] A., S. R. a. B. A. P., 1992. Verifying Expert Systems:

A Logical Framework and a Practical Tool. Expert
Systems with Applications, Volume 5, pp. 421-436.

[2] Agarwal, R., 2002. A Petri-Net Based Approach for
Verifying the Integrity of Production Systems.
International Journal of Man-Machine Studies,
Volume 36, pp. 447-468.

[3] Amazon, 2013. Amazon Elastic Compute Cloud.
[Online] Available at:
http://docs.aws.amazon.com/AWSEC2/latest/UserGu
ide/EC2_GetStarted.html#EC2_ConnectToInstance_
Linux [Accessed 15 10 2013].

[4] Anon., 16-August-2013. Engineering Software as a
Service: An Agile Approach Using Cloud Computing.
2 ed. s.l.:Amazon.

[5] Co-Researchers, C. K. a., 2012. Recent Advances in
Expert Systems. In: s.l.:s.n., pp. 1-6.

[6] D, T. S. a. V. L. P., 1997. Evaluation of Verification
Tools for Knowledge-Based Systems. International
Journal of Human-Computer Studies, Volume 47, pp.
629-658.

[7] inc., G., 2013. github.
[Online] Available at: https://github.com/mshabdiz
[Accessed 5 10 2013].

[8] Kassem, M. C. S., Mar 2013. A heuristic method for
solving reverse logistics vehicle routing problems.
International Journal of Industrial and Systems
Engineering.

[9] lynn, B., 2013. Git Magic. 3 ed. s.l.:Amazon.
[10] M., N. D. a. K., 1991. Verification of Rule-Based

Knowledge Using Directed Graphs. Knowledge

Evaluation Metric MIN MAX
CPU load average 15 Minute 1 Minutes

Resident
Memory (RAM)

(25% of
total

System
memory)

7.5 GB

Disk Cache Memory 1/2 Mem 3.5 GB
Swap Memory 1/3 Mem. 2048 MB

Total Memory (GB)
(Sum of resident,
cache and swap

memory)

…. …..

Pages Written to Disk 200 1000
Pages Read from

Disk
400 1000

Repository Size 600MB 1000 MB
Rules 10 1000

Run Speed (ms)
(Our approach)

0.00456789
ms

108.0673211109
ms

Run Speed (ms)
(Petri-Net approach)

9.0009765
ms

376.0005630911
ms

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

139

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Acquisition, pp. 339-360.
[11] N, R. D. a. R. D. A., 2007. Structural and Syntactic

Fault Correction Algorithms in Rule-Based Systems.
International Journal of Computing and Information
Sciences (IJCIS), Volume 2, pp. 1-12.

[12] R., C. J. a. C. C. S., 1987. Validation of Knowledge-
Based Systems. Arlington, s.n.

[13] Road, N. D. J., 2011. Heuristic algorithms for
container pre-marshalling problems. Taiwan,
Department of Logistics Management, National
Kaohsiung First University of Scien.

[14] Ruby, S., 2013. Agile Web Development with Rails 4.
4 ed. s.l.:The pragmatic bookshelf.

[15] Services, H. B. C. A., 2013. heroku. [Online]
Available at: https://www.heroku.com/
[Accessed 8 10 2013].

[16] Shaw, Z. A., 2013. Learn Ruby The Hard Way. 2 ed.
s.l.:learncodethehardway.

[17] Wardeh, M. B.-C. T. C. F., 2006. Dynamic Rule
Mining for Argumentation Based Systems. Liverpool,
L69 3BX.

[18] W, Y. & de Silva, W., 2008. Multi-robot box-pushing
single-agent qlearning vs team q-learning. IEEE/RSJ
International Conference on Intelligent Robots and
Systems.

[19] Y., H., 2004. Detecting Faults In Chained-inference
Rules in Information Distribution Systems.
Information Technology and Engineering.

[20] Zhu, D.-Y. W. K.-J., 2013. Application of hybrid
GA–SA heuristics for single-job production–delivery
scheduling problem with inventory and due date
considerations. International Journal of Industrial
and Systems Engineering.

Marzieh Shabdiz received her BS in Computer Software
Engineering with high honors from Islamic Azad University
of Najafabad, Isfahan, IRAN, in 2008, her MS in Information
and Communications Technology from Tarbiat Modares
University, Tehran, IRAN in 2012. Her research is focused
on the cloud environment and intelligent methods to
planning solutions. Her research interests include Database
and knowledgebase systems, Algorithms, Enterprise
System Architecture, Virtualization, Security, Cloud
computing (IaaS), Software as a service (SaaS) and
GNU/Linux Administration.

Alireza Mohammadrezaei received his BS in Computer
Hardware Engineering with high honors from Islamic Azad
University South Tehran Branch, Tehran, IRAN, in 2003, his
MS in Information and Communications Technology from
Tarbiat Modares University, Tehran, IRAN in 2012.

Hossein Bobarshad he is an Assistant Professor at
Tarbiat Modares University, Tehran, IRAN. He is also a
Member of the Institute of Electrical/Electronics Engineers
(IEEE).

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

140

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

