

Developing Parallel Programs

Ranjan Sen

Computer Science Dept., Calcutta University, India

Abstract

Parallel programming is an extension of sequential programming;

today, it is becoming the mainstream paradigm in day-to-day

information processing. Its aim is to build the fastest programs on

parallel computers. The methodologies for developing a parallel

program can be put into integrated frameworks. Development

focuses on algorithm, languages, and how the program is

deployed on the parallel computer.

1. Introduction

Parallel programming utilizes concurrency to achieve

high-performance computing. Historically confined to

supercomputing parlance, parallel programming today is

becoming the mainstream paradigm in regular day-to-day

information processing. This is energized by the

widespread availability of multi-core multiprocessors and

cost-effective server clusters. The software industry in

general is integrating rich desktop and server software-

development tools with new-generation parallel-

processing tools.

Examples include use of Microsoft Visual Studio and the

.NET extension for parallel computing, Microsoft

Windows HPC Server, decentralized distributed service-

oriented programming, grid computing, and so on. Many

of these are rich in ideas that are based on decades of

research; side-effect–free functional programming, giving

protection against race; data-flow paradigm for non–von

Neumann architecture; and many more.

Parallel programs are built by combining sequential

programs. The goal is to allow independent sequential

programs to run in parallel and produce partial results that

then are merged into the final solution via different

combination patterns. We want to get correct, bug-free

parallel programs that can deliver performance and

possibly other benefits, such as reliability, availability, and

fault tolerance that is integrated with an existing software

ecosystem.

Parallel programming is fast becoming an essential

developer skill. Multifarious variations in parallel-

processing technology, from clients to server clusters,

provide diverse developer toolsets and runtime

environments. Knowing the basic concepts helps in a

better comprehension of the complexity, and it is never

more crucial to the developer than now.

2. Correctness and Performance

Developers must continue creating correct and efficient

applications. Both correctness and performance confirm

that a program produces the result that it is supposed to

deliver within an expected time frame. In establishing this,

the conventional model that is used for sequential

computers is von Neumann’s “stored-program” model. In

the “storedprogram” model, there is a single thread of

execution; instructions are executed by one processor at a

time.

In parallel computers, there is more than one processor,

each of which executes an execution thread

simultaneously. Parallel-computer models that are used for

correctness and performance analysis are simple

extensions of stored-program models. The two models that

are used are the shared-memory model and the distributed-

memory model (Figure 1). In the first model, a common

memory is shared by all processors; in the latter model, it

is not.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

18

Figure 1: Parallel computers -- shared-memory and distributed-memory

models

The goal of achieving a high-performance application is

achieved by having several sequential programs run

simultaneously, overlapped in time, with the common goal

of solving the same problem. This leads to two important

concepts: decomposition and pattern.

3. Decomposition and Pattern

Decomposition is the art of splitting (or decomposing) a

problem into independent parts to be solved concurrently.

Each of these parts might obtain (partial) results that can

be combined to obtain the final result; we need a

combining scheme (or pattern) for these parts. We can

establish correctness and analyze for performance for each

of the parts, as well as the pattern that is used, to argue

about correctness and performance of the overall parallel

computation.

As an example, consider the problem of finding maximum

of 16 data. We can divide the data into four parts of 4 data

and find the maximum for each of these parts concurrently

on four processors. Then, we can find the maximum of the

maximums. The sequential parts that are used are the

method of finding maximum of 4 data. The pattern that is

used is finding four intermediate possible maximums in

parallel, and then finding the actual maximum. Figure 2

illustrates this scheme.

Figure 2: Scheme showing problem of finding maximum of 16 data

The idea of using decomposition and pattern is not new

(see a standard text, such as [Quinn, 2004] in References).

One can think of decomposition as finding one or more

pieces of sequential algorithm (sequential program) that

can be run concurrently on more than one processor. Such

a sequential piece is often referred to as computational

grain or simply the grain of a parallel computation.

Similarly, a pattern corresponds to a high-level algorithm

of coordination or a composition scheme. Several patterns

are known to be useful (see [Mattson, 2005] in

References).

4. Analysis of Parallel Programs

Parallel-computer models can be used to analyze parallel

algorithms or the corresponding programs for correctness

and performance. A parallel algorithm is correct if both the

sequential program and the pattern used are correct. We

can follow methods that are similar to those used for

sequential programs/algorithms to establish correctness.

We can use the same approach for debugging/diagnosing a

faulty parallel program in this way.

In determining correctness, we examine the memory states

of data that the program is supposed to transform. In

parallel programs, dependencies are linear within the

sequential pieces of programs that run in parallel.

However, the pattern may have nonlinear dependencies.

For example, the pattern that is used in the preceding

algorithm to find the maximum of 16 integers is a correct

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

19

scheme, because the programs Max1, Max2, and the

composition scheme that is given by runMax all are

correct. Figure 2 shows a graph of the dependencies of the

sequentially executing programs that are given by Max1

and Max2, as expressed in runMax.bat. More often, the

nodes of these graphs can represent either data or tasks

(computation), or both. In the former case, it is called a

data-flow graph ; in the latter, it is called a task graph .

Similarly, an algorithmic approach can give us an estimate

of performance. For example, we can reason that in the

first stage (of parallel computation), four execution

instances of Max1 on four processors can take place in

time T (to find maximum of 4 integers) concurrently. In

the second stage, we may have one execution instance of

Max2 on one processor. Then, the overall time of the

algorithm that is used is 2T with four processes (a process

is an execution instance of a program). This estimate gives

a good point of reference as to what to expect.

5. Speedup: A Measure of Performance

The ratio of time that is taken by a sequential program to

time that is taken by a parallel program is called speedup.

In general, you can find different parallel algorithms to

solve a problem. It is important to know which achieves

the best performance.

Amdahl’s law gives 1/[S + (1-S)/n] as an estimate of

maximum speedup, where S is the fraction of inherently

sequential code in an application, and n is the number of

processors. By way of illustration, in the preceding

maximum-finding program, the fraction S is given by the

program Max1.c. In the example of finding maximum of

the 16 integer, the fraction S is 0.2 (four instances of Max1

and one instance of Max2 run sequentially would be 100

percent) and, by Amdahl’s law, speedup can be at most 2.5

with four processors.

The notion of scaled speedup is given by Gustafson-

Barsis’s law. According to it, scaled speedup is bounded

by n + (1–n)*s, where n is the number of processors, and s

is the ratio of the time that is spent in the serial part of the

program versus the total execution time. In our preceding

example, s = 1/(log 4 16) = 0.5. So that, for n = 4, this is

2.5; for n = 16 (s = 0.3), it is 11.5; for n = 64 (s = 0.25), it

is 49; and so on.

6. Parallel-Computing Platforms

In the early days of parallel processing, architectures were

expensive and specialized. Recently, multi-core processors

have become the de facto processor technology. 1 The

multi-core phenomenon caused a large-scale impact on

game software in early 2000, when Sony used multiple

processors for its PlayStation PS2. 2 At the same time,

high performance server-cluster programs are superseding

the supercomputers in performance. 3

There is also the trend of special hardware, such as gate

arrays (for example, FPGA); Graphics Processor Units

(GPU) or cell processors are bringing out new ways to

assemble parallel architecture. Today, diverse scenarios of

distributed systems are using parallel processing for

improved resource utilizations, throughput, reliability, and

availability.

In the large-scale parallel-computing platform technology,

operating systems are updated for multi-core processors,

and new and extension in optimizing compilers and

development systems are being crafted out. In the

distributed-systems arena, we are seeing rapid integration

of mainstream enterprise-grade technology, as well as a

growth in loosely coupled systems. Some of the related

software and switching technology are mentioned later.

Myrinet is an ANSI 4 standard that is used widely in

computer clusters. 5 Features include an interface card that

uses firmware to process protocols and off-loads host

processors, OS bypass for low-latency communication,

and so on. Ten-gigabit Ethernet is an IEEE standard and is

the fastest version of the Ethernet standard. This is 10

times as fast as Gigabit Ethernet, which is the technology

for transmitting Ethernet frames at the rate of one gigabit

per second. Network switched fabrics, such as InfiniBand,

6 are commonly used in parallel-computer architectures

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

20

7. Computer Clusters

Clusters of computers and workstations are a very popular

hardware/software commodity as a cost-effective parallel-

processing platform (see [Sterling, 2002] in References).

However, administering and managing such clusters can

be quite complex. Clusters of Windows Server (here,

called Windows HPC Server) address these problems in

addition to the high performance platform goals. Windows

HPC Server provides necessary cluster services and tools,

including Microsoft MPI, job scheduler, and cluster-

management service to make powerful cluster solutions in

diverse scenarios. The high-performance ranking is in the

top 10 of the top-500 list. 7 New-generation network

services are added with MSMPI for support of very high-

speed communication between physical computes in a

cluster. The job scheduler can run jobs that are defined in

service-oriented architecture (SOA), in addition to

traditional job definitions, as a composition of tasks that

execute programs around the cluster nodes. Also, it

accepts jobs via the HPCBP service interface — thus

allowing interoperability from any platform that adheres to

the grid-interface protocol.

A Dryad 8 is an infrastructure for using the resources in a

cluster or data center that allows a programmer to express

a program in terms of sequential programs and connecting

them via one-way channels. Dryad can express common

computing frameworks, such as map-reduce 9 or the

relational algebra; it handles job creation and management,

resource management, job monitoring, visualization, fault

tolerance, re-execution, scheduling, and accounting. (See

Figure 3.)

Figure 3: Dryad architecture

SSIS SQL Server 2005 Integration Service has been built

on top of Dryad. It executes many instances of Microsoft

SQL Server, each on a Dryad vertex, and uses fault

tolerance and scheduling services. This is being used

currently as part of the AdCenter 10 log-processing

pipelines. The goal of DryadLINQ, 11 a related project, is

to make distributed computing on a large computer cluster

simple enough for ordinary programmers. DryadLINQ

translates LINQ programs into distributed Dryad

computations and distributes them to different nodes of a

cluster.

The features include declarative programming; automatic

parallelization (both multi-core on a workstation and

cluster-wide); integration with Visual Studio (Intellisense,

code refactoring, integrated debugging, build, source-code

management); automatic serialization; job graph

optimizations, via both static term rewriting and dynamic

query-plan optimizations; and conciseness.

8. Decentralized Software Services (DSS)

The DSS runtime is built on top of Concurrency and

Coordination Runtime (CCR), 12 which is a highly

concurrent, message-oriented programming model. CCR

has powerful orchestration primitives, enabling

coordination of messages without the use of manual

threading, locks, semaphores, and so on. CCR addresses

the need of service oriented applications by providing a

programming model that facilitates managing

asynchronous operations, dealing with concurrency,

exploiting parallel hardware, and handling partial failure.

Run-time files for CCR and DSS are available on the

Microsoft .NET Framework and .NET Compact

Framework. The DSS protocol is being distributed via the

Microsoft Open Specification Promise. 13 The availability

of the protocol will make communication between a

variety of hardware and software easier.

Binary serialization gives faster throughput. VPL

development tools support regular as well as mobile

development. Also, there is a DSS Service–generation

tool: Visual Simulation Tool.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

21

Among other large-scale clusters and new generation

integration technologies are the cloud computing

architecture from Microsoft Windows Azure, 14 Amazon

15 and the Eco-Science Analysis project. 16 The

ecological data is huge; databases, data cubes, and Web

services have been used in the context of data handling. In

science with electronic means (eScience), tools such as

Excel, MatLab, ArcGIS, and SPlus are used. The

challenge is how to connect the data in the cloud to the

analysis tool on the desktop without requiring full data

download.

9. Developing Parallel Programs

To understand better the design, we use a model at a

higher level than the shared-memory model or the

distributed-memory model. This is the task/channel model

(see [Quinn, 2004] in References). A task is a program, its

local memory, and a collection of I/O ports. This is

represented by a process in an operating system (threads

are contained in processes). The local memory contains the

program instruction and data. A task can send local data

values to other tasks via output ports and receive data

values from them via input ports. A channel is a message

queue that connects the output of one task to the input port

of another. Data values appear at the input port in the same

order in which they are placed in the output port at the

other end of the channel.

Figure 4: Task/channel model -- conceptual view

Figure 4 gives a conceptual view of the task/channel

model. Tasks are represented as circular nodes and

channels are represented by directed lines. A direct line

between task i and task j indicates a dependency of task j

on task i. Independent tasks can run in parallel.

Consequently, if the tasks are executed in parallel, task j

will have to wait for task i to send data. This is called data

dependency, and the graph is a data-flow graph. However,

if the channels represent completion signals, this depicts

control dependency; in that case, the graph is a control-

flow graph (also called a task graph).

Task parallelism is achieved when independent tasks

execute concurrently. Note that tasks that correspond to

nodes that have identical labels in Figure 4 run in parallel,

and we achieve task parallelism. Data parallelism is when

a task or tasks operate(s) on disjointed sets of data.

Consider a four-step process for parallel-program design:

partition, communication, agglomeration, and mapping

(see [Foster, 1995] and [Dongarra, 2003] in References).

Partitioning is the process of dividing the computation and

the data into pieces or primitive tasks. Increasing the

number of primitive tasks reduces the inherently sequential

fraction in the parallel program that is designed. This helps

in raising the parallelism that is possible, according to the

theoretical bounds that are given by Amdahl’s law and

Gustafson-Barsis’s law. Communication considers the

plan for interprocess communication necessary for the

parallel program.

Agglomeration is the process of grouping tasks into larger

tasks in order to improve performance or logical

abstraction. Mapping is the process of assigning tasks to

processors. The goal is to balance computation and

communication loads in order to maximize processor

utilization and minimize inter-processor communications.

10. The Parallel-Programming Ecosystem

Parallel programming aims to build the fastest programs

on parallel computers. These programs must be correct as

well as amenable to modern software-engineering

practices for efficient life-cycle management. The main

factors to achieve this are the following:

1. Algorithm that is used

2. Implementation language and interfaces

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

22

3. Programming environment and tools

4. Target parallel-computing platform

There is considerable literature on designing parallel

algorithms (see [Akl, 1989], [Leighton, 1992], and [Miller,

2005] in References). Essentially, the basic approach is

finding sequential pieces that can run in parallel and

combining efficiently the results that they obtain.

Tools for developing parallel programs are based on four

different approaches. The first is to extend a compiler. The

second is to extend a sequential programming language

and allow core parallel-programming schemes to be

captured from known environments. The third is to add a

parallel-programming layer; this is a layer on a sequential

core that controls creation and synchronization of

processes and partitioning data. The fourth is to create a

new parallel-programming language, such as Fortran 90,

High Performance Fortran, 17 or C. 18 We will discuss the

two more popular approaches: OpenMP, which is an

extension of C++, and Message-Passing Interface

(MPI).19

11. OpenMP

OpenMP is based on the shared-memory model. The

standard view of parallelism in a shared-memory program

is fork/join parallelism. When the program begins

execution, only a single thread (master thread) is active.

The master thread executes the sequential portions of the

algorithm. At points where parallel operations are

necessary, the master thread forks (creates or awakens)

additional threads. Then, the master thread and these new

threads work concurrently through the parallel section. At

the end of the parallel code, the created threads die or are

suspended, and the flow of control returns to the single

master thread.

A sequential program is a special case of a shared-memory

parallel program—one that has no fork/join. The shared-

memory model supports incremental parallelization, which

makes it possible to transform a sequential program into a

parallel program one block of code at a time. This is a

quick way to develop a parallel version of an existing

program. However, the underlying algorithm might not be

the best parallel algorithm. OpenMP makes it easy to

indicate when the iterations of a for loop can be executed

in parallel. See the second commented-out line in the

following code snippet:

 #pragma omp parallel private(t, x,y,local_count)

 {

 local_count = 0;

 Random^ rand = gcnew Random();

 t = omp_get_num_threads();

 #pragma omp parallel for

 for (int i = tid; i < samples; i += t) {

 x = rand->Next(0,10000)*.0001;

 y = rand->Next(0,10000)*.0001;

 if (x*x+y*y <= 1.0) local_count++;

 }

 #pragma omp critical

 count += local_count;

 }

The #pragma omp parallel for directives in OpenMP are

denotations to the C++ compiler to process the portion in

the curly brackets for parallel execution. Also, note how it

is possible to define parameters that are private to each

thread (to reduce contention for shared memory), and the

use of a critical segment using pragma s.

In the preceding example, private variables are declared

via a clause of the parallel pragma declaration. This

allows avoiding contention when all threads access these

variables (in the parentheses). Note that we have used a

critical segment to allow the threads to add their results

back to the value to the shared variable count .

12. Message-Passing Interface (MPI)

MPI is a standard programming library that is available

from FORTRAN, C, or C++. It enables creation of a

distributed-memory programming environment that can be

established across different physical computers. There are

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

23

different flavors of MPI: Microsoft MPI (which is based

on MPI-2 20), HP MPI, Intel MPI, Open MPI, LAM/MPI,

MPICH, FT-MPI, and others.

SPMD for a distributed-memory parallel-computer model

is the underlying approach of the programming. The same

program is run on all participating computers (processors,

cores, and nodes). An MPI runtime makes services

available through application programming interfaces

(APIs) for necessary support of parallel computation.

Processors are identified by rank in a communication

world, and it is possible to have one-to-one as well as

collective communication between them.

Figure 5: Three physical computers hosting multiple processes with

distinct ranks

In Figure 5, three physical computers are shown to host

multiple processes that have distinct ranks.

The entire collection forms a communication world, so

that any processes that are in it can access each other via

message-based communication.

A simple MPI program is shown in the following code

snippet:

 #include “mpi.h”

 #include <stdio.h>

 int main(int argc,char* argv[]) {

 int numtasks, rank, rc;

 /** initialize MPI environment **/

 rc = MPI_Init(&argc,&argv);

 if (rc != MPI_SUCCESS) {

 printf (“Error starting MPI program. Terminating.\n”);

 MPI_Abort(MPI_COMM_WORLD, rc);

 }

 /** get the number of processes and their ranks **/

 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 printf (“Number of tasks= %d My rank= %d and

Hostname=%s\n”,

numtasks,rank,getenv(“COMPUTERNAME”));

 MPI_Finalize();

 }

MPI functions and constants are defined in the mpi.h file

and the data types; operations and constants are similar to

the standard C and FORTRAN equivalents. For complete

list of MPI functions, see [Gropp, 1999] in References.

13. New-Generation Tools

Java and .NET programming languages have programming

extensions to support parallel programming in managed

runtimes (see [Lea, 1999] in References). Parallel FX

Library (PFX) runs on .NET Framework 3.5 and the to be

released new .NET Framework 4.0. 21 The .NET

Framework provides a runtime that is called the CLR and

which runs the code in a managed environment, with

automatic garbage collection, just-in-time execution,

added code-access security, and so on. In this way, parallel

processing is integrated with the hosts of modern .NET-

based technologies. 22

The underlying technique in PFX is to use anonymous

functions— building expressions by using them and then

executing such expressions in parallel. It is convenient to

represent anonymous functions as anonymous delegates 23

or as lambda expressions. 24 Also, it is possible to create

expression trees by using nesting of expressions; and, with

the help of lambda expressions, we can use functions in

such expressions.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

24

Imperative task parallelism is achieved via the task parallel

library: System.Threading.dll. Task Parallel Library (TPL)

is built on a scheduler that uses cooperative scheduling and

work stealing to achieve fast, efficient scheduling and

maximum processor utilization.

TPL provides the System.Threading.Parallel,

System.Threading.Tasks.Task , and

System.Threading.Tasks.Future<T> types, respectively.

The first type is used for parallelizing loops and regions.

The static methods that are available with the Parallel type

are For , ForEach , and Invoke . For example:

Task Parallel:

for (int i=0; i < n; i++) results[i] = compute(i);

Parallel.For(0, n, I => results[i] = compute(i));

Data Parallel:

(IEnumerable<T> objects;

Use of foreach and ForEach keywords):

foreach(testClass t in data) compute (t);

Parallel.ForEach(data, delegate(testClass t)

{compute(c);});

Note that the For and ForEach methods take a lambda

expression for definition of the function to apply in

parallel. The Invoke static method can be used to run

statements in a block of statement in parallel. The Task

class can be used to create and operate on a task; it is

similar to what ThreadPool provides. A delegate is

queued for execution. The Task is simpler to use and

offers more functionality. Methods for wait, status check

of tasks are present. Illustrations are given in C#, but TPL

is available also in Visual Basic 2008 and F#, which is a

functional programming language (see [MacLennan, 1990]

in References).

The Future<T> class derives from Task . This has a value

associated with it that is the result of the asynchronous

execution of the System . Func<T> type instance that is

provided as parameter. The value can be accessed from the

Future instance and can be used to wait until it is

available. Future provides a mechanism to define a data-

driven or dataflow computing architecture. 25

High-level constructs — such as thread-safe collections,

more sophisticated locking primitives, data structures for

work exchange, types to control how variables are

productive, and the repertoire of powerful synchronization

primitives — include CountEvent, LazyInit<T>,

ManualResetEventSlim , SemaphoreSlim , SpinLock ,

SpinWait, WriteOnce<T>, and the

Collections.BlockingCollection<T>,

Collections.CouncurrentQueue<T> , and Collections.

ConcurrentStack<T> .

Parallel LINQ (PLINQ) is a component of PFX. The data

parallel nature ensures that programs can scale efficiently

as data increases. PLINQ offers an incremental way of

taking advantage of parallelism for existing solutions to

existing problems. To use PLINQ, you will have to wrap

the data source in an IParallelEnumerable<T> with a call

to the System.Linq.ParallelEnumerable.AsParallel

extension method (IParallelEnumerable is an extension

of IEnumerable<T>).

The var q defines the query, and foreach actually

executes it over the data source q . This declarative query

helps the PLINQ to delay determination of optimal

resource uses, such as the number of processors to run the

query until it is actually executed in the foreach with

action a . It will arrange for parts of the query to run on the

available processors through the hidden use of multiple

threads.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

25

14. MPI.NET

MPI.NET 26 is an efficient interface for using the native

MPI library from C#. It simplifies interface and extends

MPI by taking advantage of features of C# and the

managed-unmanaged interoperability mechanism. Several

innovative measures have been taken to reduce abstraction

penalties in performance. For example, generic versions of

point-to-point Send allow the use of any user-defined

types for transmission. In general, this is extended to all

types of communication operations. For more information,

see [MPI.NET, 2008] in References

15. Programming Environment and Tools

In multi-core systems, operating systems are revamped to

include various paradigms to ensure better resource

utilization. In clusters, many of these supports are

integrated development and deployment services and tools,

including service-oriented job scheduling. 27

Tools provide debugging support at both source levels,

such as in Visual Studio. Visual Studio also provides a

parallel debugger extension. 28 Trace logs can help

diagnose these problems. 29 Portland Group has a

debugger for Windows cluster. 30 Other providers include

TotalView. 31

The most common process is to profile the behavior via

tracing tools, followed by analysis and tuning. MPI was

developed with tracing in mind. MPE, which is trace

library, is available with MPI distribution 32 ; also, it is

shipped with Windows HPC Cluster. 33 The trace may be

viewed by using viewing tools, such as Jumpshot. 34

Other tools include Intel Trace Analyzer and Collector

(Vampir), 35 MPICL + ParaGraph, 36 and Epilog and

KOJAK. 37

16. Conclusion

Parallel programming is an extension of sequential

programming. A parallel algorithm is given by algorithms

of the constituting sequential program and a pattern to

combine them. The programming model for analyzing

sequential programming is extended to the shared-memory

model and the distributed-memory model. Various

processor and cluster architectures that support parallel

computing are variations of these two models.

Correctness of parallel programs can be established via

correctness of the sequential programs and the pattern of

combination of these pieces. Performance of parallel

programs depends on algorithm, implementation details,

and target-computer architecture. Parallel computers range

from multi-core processors to clusters, computational

grids, and cloud computers.

All of the methodologies for developing parallel programs

can be put into an integrated framework. Development

focuses on algorithm, languages, and how the program is

deployed on the parallel computer.

References

[1] Akl, Selim G. The Design and Analysis of Parallel

Algorithms . Englewood Cliffs, NJ: Prentice Hall, 1989.

[2] Dongarra, Jack J., et al. Sourcebook of Parallel Computing .

San Francisco: Morgan Kaufman Publishers, 2003.

[3] Foster, Ian. Designing and Building Parallel Programs :

Concepts and Tools for Parallel Software Engineering . Reading,

MA: Addison-Wesley, 1995.

[4] Gropp, William, et al. Using MPI: Portable Parallel

Programming with the Message-Passing Interface . Cambridge,

MA:MIT Press,1999.

[5] Lea, Doug. Concurrent Programming in Java: Design

Principles and Patterns . Second edition. Reading, MA:

Addison-Wesley,1999.

[6] Leighton, Frank Thomson. Introduction to Parallel

Algorithms and Architectures: Arrays, Trees, Hypercubes . San

Mateo, CA: M. Kaufmann Publishers, 1992.

[7] MacLennan, Bruce J. Functional Programming: Practice and

Theory . Reading, MA: Addison-Wesley, 1990.

[8] Mattson, Timothy G., et al. Patterns for Parallel

Programming . Boston: Addison-Wesley, 2005.

[9] Miller, Russ, et al. Algorithms Sequential and Parallel: A

Unified Approach . Second edition. Hingham, MA: Charles River

Media, 2005.

[10] Gregor, Douglas, and Andrew Lumsdaine. “Design and

Implementation of a High-Performance MPI for C# and the

Common Language Infrastructure.” MPI.NET Publications.

Proceedings of 13th ACM SIGPLAN Symposium on Principles

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

26

and Practice of Parallel Programming, Salt Lake City, February

2008.

[11] Quinn, Michael J. Parallel Programming in C with MPI and

OpenMP . Dubuque, IA: McGraw-Hill, 2004.

[12] Sterling, Thomas L. Beowulf Cluster Computing with

Windows . Cambridge, MA: MIT Press, 2002

Ranjan Sen earned his Ph.D. in Computer Science at Calcutta
University in 1978, and has served on the faculty of several
universities since 1979, including Indian Institute of Technology,
Rutgers University, and Hampton University. Ranjan specializes in
graph theoretic modeling for algorithm to architecture mapping and
has published extensively on the subject.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

27

	1. Introduction
	2. Correctness and Performance
	3. Decomposition and Pattern
	4. Analysis of Parallel Programs
	5. Speedup: A Measure of Performance
	6. Parallel-Computing Platforms
	7. Computer Clusters
	8. Decentralized Software Services (DSS)
	9. Developing Parallel Programs
	10. The Parallel-Programming Ecosystem
	11. OpenMP
	12. Message-Passing Interface (MPI)
	13. New-Generation Tools
	14. MPI.NET
	15. Programming Environment and Tools
	16. Conclusion

