

On the automatic construction of LTAG Grammars from a

Vietnamese Dictionary

Ha Phan Thi1, Nam Ha Hai2

 1 Faculty of IT, Posts and Telecomunications Institute of Technology, VietNam

hathiphan@yahoo.com

2 Faculty of IT, Posts and Telecomunications Institute of Technology,VietNam

namhh@ptit.edu.vn

Abstract
This paper presents a method for automatically extracting

lexicalized tree-adjoining grammars (LTAG) from a

Vietnamese dictionary. A system for automatically extracting

LTAG grammars for Vietnamese from an electronic dictionary

has been implemented for evaluation purpose. The experiment

results of the proposed method are evaluated against the results

of extracting LTAG grammars from VietTreeBank.

Keywords: LTAG; Lexicalized Tree Adjoining

Grammar; Treebank, dictionary.

1.Introduction

Syntax analysis is a critical step in natural language

processing pipeline. High quality syntax analysis will

improve the performance of a natural language

processing systems such as machine interpretation, text

summarization, automatic Q&A systems.

Every syntax analyser needs a set of syntactic rules

called linguistic grammar that is represented by a

specific grammar formalism. Manual construction of

grammars is a time consuming and tedious process.

Therefore, much research has been carried out to solve

the automatic or semi-automatic construction of

grammars. Almost published research on the

construction of grammars for natural language

processing systems focused on popular languages such as

English, French, Chinese... In general, there are two

main approaches to the automatic construction of

grammars. The first approach employs high-order

grammar descriptions to generate the grammars called

meta-grammar [1]. The second approach focuses on

automatic extraction of grammars from a syntax-

annotated corpus called Treebank. A method for

automatic extraction of LTAG from VietTreeBank was

proposed in [2]. The method proposed in this paper takes

the second approach, which will automatically extract

the LTAG grammars from a Vietnamese electronic

dictionary. Dictionaries are usually developed by

linguistic experts. This results in high accuracy in

morphology, syntactic and sematic information. Each

lexical item of a dictionary consists of three types of

information: morphology information, syntactic

information and sematic information. Using additional

information from dictionaries is expected to enhance

accuracy of the LTAG grammar extraction.

The rest of the paper is structured as follows: Section 1

provides background about the LTAG grammars;

Section 2 introduces the Vietnamese dictionaries used in

the proposed method; Section 4 describes the extraction

algorithm based on dictionaries; Section 5 presents the

experiment results and efficiency comparisons between

VietTreeBank-based and dictionary-based LTAG

grammar extraction methods; and the final section

discusses conclusions and future directions

2. Tree-Adjoining Grammar – TAG

Tree-adjoining grammar is a grammar formalism

proposed by Aravind Joshi in [3,4]. A TAG grammar is a

4-tuple G = <N,T,I,A>.

- N is a finite set of nonterminal symbols

- T is a finite set of terminal symbols

- I is a finite set of initial trees

- A is a finite set of auxiliary trees

Tree-adjoining grammars are classified as mildly

context-sensitive grammars using trees as elementary

units for rewriting rules. Much research on TAG has

focused on formalism and applications to analysis of

different natural languages such as English, French

[5,6,7,8,9]. The elementary unit of a tree-adjoining

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

40

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

grammar is elementary trees. If every elementary tree has

at least one leaf node wth a terminal symbol then the tree

adjoining grammar becomes lexicalized tree adjoining

grammar (LTAG).

Elementary Trees

A tree-adjoining grammar is composed of a set of

elementary trees. There are two types of elementary tree:

initial trees and auxiliary trees, which are the basic

building blocks of the formalism. An initial tree has all

inner nodes labeled with nonterminal symbols; and the

leaf nodes are either labeled with terminal or nonterminal

symbols, which are marked with the substitution marker

(“↓”, for instance). An auxiliary tree is defined as an

initial tree, except that exactly one of its leaf nodes must

be marked as a special node called foot node. The foot

node must be labeled with a non-terminal symbol (`*',

for instance), which is the same as the label of the root

node.

Two rewriting operations

Trees in TAG can be combined using two operations:

substitution and adjunction. Substitution operation

substitutes a leaf node labeled with a symbol X of a tree

α with a tree β whose root node is labeled with the same

symbol X. The substitution operation is illustrated in

Figure 1.

 Figure 1. Illustration of substitution operation.

Adjunction operation inserts an auxiliary β with the root

node labeled with a symbol X into another tree α at an

inner node u labeled with a symbol X and the original

sub tree of α rooted at node u is extracted from α and

inserted below the foot node of β. The adjunction

operation is not performed at nodes marked as

substitution nodes of α. Figure 2 illustrates the

adjunction operation.

Figure 2. Illustration of adjunction operation.

Analysis and derived trees

The intermediate trees generated when applying

substitution and adjunction operations are analytic trees.

Full analysis tree are trees whose all leaf nodes are

labeled with nonterminal symbols. Hence, syntactic

analysis of a sentence starts from an elementary tree

whose root node is an axiom and searches for a full

analytic tree whose leaf nodes are corresponding to the

words in the sentence.

Figure 3a shows an example of syntactic derivation of

the sentence “John always laughs”. If αJohn, αalways and

αlaughs are the trees for John, always và laughs,

respectively, then this derivation uses two rewriting rules

of LTAG formalism as follows:

 The tree αJohn substitutes the leaf node that is

labeled with symbol NP of the tree αlaughs to

generate the analytic tree shown in Figure 3b;

 The auxiliary tree αalways is inserted at the node VP

of the analytic tree derived from previous

substitution step to generate the derived tree

illustrated in Figure 3c.

Fore context-free grammar, rewriting rules can

be derived by inspecting the syntactic trees. For TAG

grammar, it is not possible to know the rewriting rules

for generating an analytic tree by inspecting the tree.

Therefore, in LTAG grammar, a special structure called

derived tree is used to record the operations for

generating analytic tree from elementary trees. Each

node of a derived tree refers by name to an elementary

tree. Each arc of a derived tree represents an adjunction

operation using a dashed line or a substitution operation

using a solid line. Besides, every node to which the

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

41

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

rewriting operations are applied is marked by a Gorn
1

address. The derived tree for the sentence John always

laughs is illustrated in Figure 3c.

Figure 3. Example of derivation with substitution and

adjunction in TAG grammar.

When building TAG grammar for a natural language,

some principles are used. First, TAG grammar is

lexicalized: every elementary tree has a leaf node

attached to a lexical unit called lexical anchor. Second,

each initial tree in LTAG grammar represents a

projection component of an anchor, which supplements

the anchor word. Third, elementary trees are minimal.

An initial tree must contains an anchor word that is the

central word of the primary component of the sentence

and all mandatory projected components of the anchor

word [8]. All the auxiliary components, which are

recursively added, will be constructed by using

adjunction operation on the auxiliary trees. When

constructing a sentence, the substitution is corresponding

to attaching arguments to a predicate and the adjunction

is equivalent to adding auxiliary components. Therefore,

a derived tree represents semantic dependent

relationships among words in the tree. This explains the

wide acceptance of using derived trees as an interface

between syntax and semantics in sematic approaches in

LTAG grammar. LTAG grammar is classified as mildly

context-sensitive grammar. Therefore, its generation

capability is stronger than context-free grammar; that

makes LTAG grammar easily transform to unified

grammar formalisms. LTAG grammar formalism is

suitable for linguistic applications as the properties of

LTAG grammar allow for naturally describing syntactic

symptoms. LTAG grammar has been selected to model

1
 Gorn address is recursively defined as follows: address of the

root node is 0, kth child node k of a node with address j takes

address j.k.

Vietnamese grammar where LTAG syntactic analyzer

has been fine tuned for Vietnamese.

3. Vietnamese Dictionary

Vietnames machine readable dictionary
2
 developed by

the project KC.01.01/06-10 contains 35.000 word item

with 41700 meanings. The corpus model is based on

LMS standard developed by ISO/TC 37/Sc 4. LMF is

organised into packages that allow for specifying

linguistic information at different levels.

Each lexical item of a dictionary consists of three types

of information: morphology information, syntactic

information and sematic information. Morphology

information describes the word structure. Syntactic

information describes word types and sub-types; sub-

categorization frame; arguments of predicates, syntactic

functions and components of parameters. Semantic

information describes logic constraints. The dictionary

uses XML encoding for the sake of information

exchange between different systems, language

comparison research and future updates.

Observations on structure of the Vietneamse

dictionary shows that each lexical item takes either of the

two forms: The first form, the word is not a verb then

there is only information about word types and sub-types.

Figure 4 shows the XML description of the noun “đế

quốc” in the dictionary. The second form, the word is a

verb then there is information about word types and sub-

types and predicate-argument relationships. Figure 5

shows the XML description of the verb “đi” in the

dictionary.

<Entry>

 <HeadWord>đế quốc</HeadWord>

 <Morphology>

 <WordType>compound

word</WordType>

 </Morphology>

 <Syntactic>

 <Category>A</Category>

 <SubCategory>Ap</SubCategory>

2
 http://vlsp.vietlp.org:8080/demo/?page=vcl

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

42

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

http://vlsp.vietlp.org:8080/demo/?page=vcl

 </Syntactic>

 <Semantic>

 ………………

 </Semantic>

</Entry>

Figure 4. XML description of a noun.

1. <Entry>

2. <HeadWord>đi</HeadWord>

3. <Morphology>

4. <WordType>simple word</WordType>

5. </Morphology>

6. <Syntactic>

7. <Category>V</Category>

8. <SubCategory>Vt</SubCategory>

9. <SubcategorizationFrame

val="Sub+V+Obj"/>

10. <SyntacticArgument>

11. <feat att="syntacticFunction" val="Sub"/>

12. <feat att="syntacticConstituent" val="NP"/>

13. </SyntacticArgument>

14. <SyntacticArgument>

15. <feat att="syntacticFunction" val="Obj"/>

16. <feat att="syntacticConstituent" val="PP"/>

17. </SyntacticArgument>

18. <Before>R: đang</Before>

19. </Syntactic>

20. <Semantic>

 ………. …..

21. </Semantic>

22. </Entry>

Figure 5. XML description of a verb.

4. Elementary Tree Construction Algorithm

An algorithm for constructing the elementary trees for

LTAG grammar has been developed based on predicate-

argument relationships embodied in morphology and

syntactic information of lexical items in the dictionary.

The algorithm is fine tuned for the Vietnamese

dictionary. Followings are the fundamental steps of the

algorithm:

Step 1: For every lexical item, construct a mapping

table that maps word types to corresponding syntatic

components.

Step 2. For each lexical item, check if there exists

sub-categorization frame in the syntactic tag

(<Syntactic>):

- If exists, construct three types of elementary

trees: Type-1 tree is the elementary tree that contains

word phrase, word type and lexicon (e.g. “(VP (V đi))”);

Type-2 rree is the elementary that contains word phrase,

word type, lexicon and folowing arguments (e.g. “(VP (V

đi) (+PP))”). The type-2 tree exists only if folowing

arguments exist. Type-3 tree is the elementary tree that

contains syntactic components of a lexical item (e.g. “(S

(+NP) (VP (V đi) (+PP)))”)

- If not exists, construct trees that contains word

phrase, word type and lexicon (Type-1 tree)

The details of the algorithm is presented in the

Algorithm 1.

Algorithm 1 BuildTree(Lexical Item)

SyntacticArgument[]: Array of arguments of a verb

Headword: Lexicon

SubcategorizationFrame: Syntactic frame of a lexical

item that is a verb

SyntacticComponents {NP,PP,AP,NP,VP,NP,RP,QP}

correspond to wordtypes

Input: Lexical Item

Ouput: Spin Elementary Tree

Begin

//BUILD TYPE-3 TREE

1 Begin

2 If (SubcategorizationFrame!=)

3 Begin

4 SyntacticArgument  (Each argument from

 left-to-right  SubcategorizationFrame)

5 Tree = S+ syntactic component

 corresponding to head argument of headword

6 (SyntacticArgumen[0]) + syntactic

component corresponding to word type +

word type + headword

7 Construct the tree T in Type-3Tree, the

beginning part of each tree T is Tree and its

end part is a string str that contains the labels

of syntactic components of the arguments after

headword. Each argument may contains more

than one component labels so there might be

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

43

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

more than one strings str. Therefore, Type-

3Tree might have more than one tree T.

 8 End;

 9 End.

//BUILD TYPE-2 TREE

1 Begin

2 If (SubcategorizationFrame!=)

3 Begin

4 SyntacticArgumen  (Each argument from

 left- to-right  SubcategorizationFrame)

5 if (SyntacticArgument[1]!=)

6 Begin

7 Tree = Syntactic component corresponding to

word type + word type + headword

8 Construct tree T in Type-2Tree, the beginning

part of each tree T is Tree and its end part is a

string str that contains the labels of syntactic

components of the arguments after headword.

Each argument may contains more than one

component labels so there might be more than

one strings str. Therefore, Type-2Tree might

have more than one tree T.

9 End;

10 End;

11 End.

//BUILD TYPE-1 TREE

1 Begin

2 Type-1Tree= Label of syntactic component +

word type + headword

3 return (Type-1Tree Type-2Tree  Type-

3Tree)

4 End.

Applying the Algorithm 1 for lexical item ”đi” described

in Figure 4 results in:

Type-3 Tree= (S (+NP) (VP (V đi); str1= (+PP)));

Tree3 Tree= (S (+NP) (VP(V đi) (+PP))).

Type-2 Tree= (VP (V đi); str1= (+PP)), T=(VP(V đi)

(+PP)). Type-2 Tree contains (VP (V đi) (+PP)).

Type-1 Tree= (VP (V đi)).

The Algorithm 1 constructs initial trees from a

Vietnamese machine-readable dictionary. The

description of auxiliary components of a lexical item in

the dictionary is not sufficient to construct auxiliary

trees.

5. Results and Discussion

In the experiment, two sets of elementary trees have

been generated for a number of verbs.. The first set of

initial trees has been generated using the method

proposed in this paper. The second set of elementary has

been generated from VietTreeBank. Trees from the two

sets of elementary generated for each verb were

compared to each other in terms on intersection and bias.

Table 1 shows details of the experiment results.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

44

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

0

2000

4000

6000

8000

10000

12000

14000

Từ loại chung Từ loại chi tiết (Vt,Vu)

BothTree

allBankTree

allXmlTree

BothWord

Figure 6. Comparison diagram on elementary trees.

Figure 6 shows the significant difference of intersected

elementary trees generated from the dictionary and

VietTreeBank. In the experiment, the common and

detailed word type have been captured from 1469 anchor

words as verbs. The experiment indicates that word types

and subtypes in VietTreeBank are not consistently

annotated for lexical items. Therefore, the labels of word

types for lexicons in VietTreeBank need to be

standardized. Statistics in Table 1 indicates that the

number of intersected words is approximately equal to the

number of intersected initial trees for common word type

category. The proportions of the intersected initial trees to

the trees from the dictionary or VietTreeBank are small.

The initial trees derived from the dictionary do not provide

syntactic information as rich as those of VietTreeBank do.

The elementary trees of VietTreeBank do not cover those

of the dictionary. In the dictionary, there is only sub-

categorization frame for verbs not for other predicates

(noun, adjective, preposition). This results in small ratio of

intersection of trees. Therefore, sub-categorization frames

of the dictionary need to be enriched.

The annotation errors are unavoidable in big treebanks.

The errors occur in syntactic analysis trees make

elementary trees invalid. An elementary tree is considered

as invalid if it does not hold for a certain linguistic

requirement. For Vietnamese, invalid elementary trees can

be removed using grammar rules. For example, in

Vietnamese, an adjective (or adjective phrase) cannot be

the next central node for a verb etc. Therefore, an

elementary tree is considered invalid if there exists an

adjective, a noun or a preposition being central node of a

verb phase or other types of phrase. Another case of

invalid tree in Vietnamese is that an initial tree is

considered invalid if its central node has more than four

mandatory arguments (see Figure 7). In VieTreeBank,

there are some elementary trees that have more than 4

arguments. Whereas, the maximum number of arguments

of an elementary tree constructed from the dictionary is

three.

The list of initial trees derived from VietTreeBank that

cannot be derived from the dictionary provides linguistic

knowledge to filter out certain elementary trees that are

invalid for grammar rules extracted from VietTreeBank.

For instance, following trees

are invalid: (VP (A tạm)); (S (VP (N nói)) (+NP)); (VP (N

tai nạn) (+n));(VP (N nước)).

Table 1. Comparison of Spin elementary trees generated from dictionary and those of VietTreeBank

Experiment

Step

Number of

trees from

dictionary

Intersected

Word (Both

Word)

Number of

trees from

dictionary that

has anchor

word

intersected

(allXml Tree)

Number of

trees from

VietTreeBan

k that has

anchor word

intersected

 (allBank

Tree)

Number of

intersected

trees (Both

Tree)

Similarity

Ratio of

LTAG

compared to

VietTreeBa

nbank

Similarity

Ratio of

LTAG

compared to

the

dictionary

Average

number of

words per

intersected

tree

Common

word type
 56386 1469 6355 3701 1481 40.02% 23.30% 0.999

Detailed

word type

(Vt,Vu)

 59243 1469 6963 3701 892 24.10% 12.81% 1.65

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

45

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Figure 7. An example of invalid initial tree.

6. Conclusions

This paper presents a method for automatically

constructing LTAG grammars from a Vietnamese

machine-readable dictionary, which can be applied to

Vietnamese syntactic analysis problem. The elementary

trees constructed from the Vietnamese dictionary also

provide linguistic knowledge to filter out invalid

elementary trees extracted from VietTreeBank. The

experiment indicates the need for richer sub-categorization

frames for the cases other than verbs in VietTreeBank. The

experiment also shows that labels for word types and

subtypes used in VietTreeBank need to be standardized

using common criteria. The results show potentials for

using Vietnamese dictionaries together with VietTreeBank

to improve the quality of automatic LTAG grammars

construction systems.

References

[1] A. Kinyon and C. A. Prolo, A classification of grammar

development strategies, In Proceedings of the Workshop on

Grammar Engineering and Evaluation, pages 43—49, Taipei,
Taiwan, 2002.

[2] Lê Hồng Phương, Nguyễn Thị Minh Huyền, Nguyễn Phương

Thái, Phan Thị Hà, Trích rút tự động văn phạm LTAG cho

tiếng Việt, Tạp chí Tin học và Điều khiển học, T.26. S2. 153-

171, 2010.

[3] A. K. Joshi and Y. Schabes, Handbooks of Formal

Languages and Automata, chapter Tree Adjoining

Grammars, Springer-Verlag, 1997.

[4] A. K. Joshi, L. S. Levy, and M. Takahashi, Tree adjunct

grammars, Journal of the Computer and System Sciences,

10:136–165, 1975.

[5] A. Abeillé, Treebanks - Building and Using Parsed Corpora,
Dordrecht: Kluwer Academic Publishers, 2003.

[6] C. Doran, B. Hockey, A. Sarkar, and B. Srinivas, Evolution

of the XTAG system, In A. Abeillé and O. Rambow, editors,

Tree adjoining grammars, pages 371–404. Stanford CSLI,
2000.

[7] E. V. de la Clergerie, B. Sagot, L. Nicolas, and M.-L.

Guénot, FRMG: évolution d’un analyseur syntaxique TAG du

franc¸ais “, In Workshop ATALA de IWPT 2009, Paris,

2009.

[8] Y. Parmentier, SemTAG: Une plate-forme pour le calcul

sémantique à partir de grammaires d’arbres adjoints, PhD
thesis, Université Henri Poincaré, Nancy I, 2007.

[9] R. Frank, Phrase Structure Composition and Syntactic

Dependencie , MIT Press, Boston, 2002.

First Author: Dr. Phan Thi Ha is currently a lecturer in the

Department of Information Systems at Posts and

Telecommunications Institute of Technology in Vietnam. She

received a B.Sc.in Math & Informatics, a M.Sc. in Mathematic

Guarantee for Computer Systems and a PhD. in Information

Systems in 1994, 2000 and 2013, respectively. Her research

interests include machine learning, natural language processing

and mathematics applications.

Second Author: Dr. Ha Hai Nam is an Associate Professor in

the Department of Information Systems at Posts and

Telecommunications Institute of Technology in Vietnam. Dr.

Nam studied for a PhD. in Computer Science at Newcastle

University where he explored the application of optimisation

techniques to smart graphics. His research interests include

optimisation, machine learning and distributed computing.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

46

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

