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Abstract 
The paper presents Greedy Randomized Adaptive Search 

Procedure with Path Relinking (GRASP with PR) for the Critical 

Node Detection Problem (CNDP). An evolutionary Path 

Relinking mechanism is added to GRASP with PR to intensify.  

Our computational experiments show that this algorithm is a 

competitive method compared with the previously proposed 

methods for solving CNDP such as Variable Neighborhood 

Search and Simulated Annealing. 
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1. Introduction 

Identifying a small number of key nodes from a network 

has important role for many cases in the real world. For 

example, identifying key members can be used for 

network immunization when it is expensive to vaccinate 

all members of network, and only a limited number of 

members can be vaccinated. The study of covert terrorist 

networks can be illustrated another application. Destroying 

a member of a terrorist network may need a large amount 

of resources. In this case, identifying key members of a 

terrorist network could be crucial for a government. 

 

Given an undirected graph       , and an integer k, the 

identifying critical nodes of a graph involves the finding a 

set of k nodes      of the graph whose deletion become 

the graph with minimum pairwise connectivity [1]. It is 

called the Critical Node Detection Problem (CNDP). 

Mathematically, the objective function of CNDP is 

calculated by the formula defined in eq. (1). 

      {                                                    }      

Formally, CNDP is to find    whose objective function 

      gives minimum value. 

 

An integer linear programming model and proof of NP-

completeness for CNDP are provided in [1], and the 

authors introduce a heuristic on a limited number of 

network structures with a small number of nodes. Also, 

CNDP is NP-complete on trees with non-unit edge costs 

while it is solvable within polynomial time when the input 

graphs have tree structure with unit edge costs [2], and the 

authors in [2] propose a dynamic programming method. 

With limitations on graph’s structure, i.e., bounded tree-

width, and series parallel graphs, dynamic programming 

approaches are proposed in [3], [4], and a branch and cut 

algorithm is presented in [5]. An approximation algorithm 

based on a randomized rounding is introduced in [6]. For 

larger general graphs with up to 5000 vertices, 

Metaheuristics, a simulated annealing (SA) and 

population- based incremental learning algorithms (PHIL), 

are proposed and experimentally compared in [7], and the 

authors create random graphs based on Barabasi-Albert, 

Erdos-Renyi, Forest-Fire, Watts-Strogatz network models 

for evaluation. A variable neighborhood search is 

proposed in [8] and tested on the same instances with [7]. 

 

In the paper, we propose GRASP with PR for CNDP and 

test it on well-known 16 instances defined in [7]. The 

computational experiments show that the hybrid algorithm 

is a competitive method compared to previously proposed 

metaheuristics such as SA, PHIL, and VNS. The 

remainder of the paper is structured as follows. Section 

two describes the proposed algorithm in detail. The results 

of the computational experiments are presented in section 

three. Finally, we conclude the paper and discuss some 

future work. 

2. GRASP with PR for CNDP 

GRASP is a multi-start procedure that iteratively executes 

two main steps, namely construction and local search. The 

aim of the construction step is to discover a promising 

basin from solution space while the aim of the local search 

step is to improve the constructed solution and find the 

optimal solution of the basin. For a more complete 

description and recent survey of GRASP, we refer the 

readers to [9], [10].  

 

This section describes the design of GRASP with Path 

Relinking (GRASP+PR) for CNDP. Firstly, we give 

general scheme of hybridization of GRASP with PR. Then, 

the sub-procedures of the scheme are described in the 

following sub-sections. 

 

PR, originally proposed as intensification tool in the 

context of tabu search in [11], can be used as an 

enhancement to the basic GRASP procedure by exploring 
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trajectories between the two high quality solutions 

obtained by a heuristic algorithm [9, 10]. A set of the high 

quality solutions is maintained during GRASP iterations. 

The set of high quality is called elite set. A member in the 

elite set is randomly selected for first solution of PR. The 

second solution is obtained by GRASP. Then PR will 

relink the two solutions. After that, the new solution 

created by PR will be a candidate for inclusion in the elite 

set. 

 

The general scheme of GRASP with PR is given in Fig. 1. 

The percentage symbol (%) indicates module operator in 

the line 15. 

 

 

Fig. 1 Pseudocode of GRASP with PR algorithm for CNDP. 

2.1 Local Search 

The aim of the local search step is to explore 

neighborhoods of the solution obtained by previous 

construction step in order to find the optimal solution in 

the region. The standard hill climbing is used for local 

search in this study. To explore neighborhoods, a 

neighborhood structure is needed to be defined for a 

specific problem. In the context of CNDP, neighborhoods 

of a solution are the set of solutions which can be visited 

by removing a node from V’ and adding a node among 

V\V’ into the current solution. Local search stops if the 

number of iterations is reached the pre-defined limit 

(              ). The best solution is returned as the local 

optimal solution. 

2.2 Path Relinking 

Let A and B be two solutions to be relinked by PR. PR 

procedure starts with A and gradually transforms it into B 

by successively swapping elements from     and     

[11]. At each step of PR, two nodes are selected by 

examining contribution in objective function’s value. The 

first node is a node from A\B that is minimum increase in 

objective function’s value. The second node is a node from 

B\A that is maximum increase in objective function’s 

value. Then the first node is removed from A and the 

second node is added into A. This procedure is repeated 

until A reaches B. The pseudocode of PR is presented in 

Fig. 2. The standard Hill Climbing addressed in section 2.1 

is also used for the local search in PR.  

 

Fig. 2 Pseudocode of evolutionary PR for CNDP. 

2.3 Updating Elite Set 

Candidate solutions have to satisfy two conditions in order 

to become a member of the elite set. The first condition is 

that the candidate solution has to be different with each 

solution in the current elite set. If the candidate satisfies 

the first condition, it can be considered as different from 

the elite set, and will be checked with the second condition. 

The second condition is that the candidate has to be better 

than its own parent solution in terms of quality of solution. 

The candidate is replaced with its parent solution if it 

satisfies both two conditions. 

2.4 Evolutionary Path Relinking 

PR can also be used as intensification tool of elite sets [10]. 

It is called evolutionary PR. In the evolutionary PR, PR is 

periodically applied to several members of the elite set. In 

the study, PR is called in every           iterations and 

each pair in the elite set is relinked by PR. The resulting 

solution of each evolutionary path relinking will be a 

candidate for inclusion in elite set. 
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3. Computational Experiments 

In this section, we will address about computational 

experiment and comparison of the performance of the 

proposed algorithm with the previously proposed methods 

for CNDP. We use instances from [7] for evaluation and 

the detailed information of the instances is presented in 

Table 1.  

Table 1: Sizes of the graphs from [7] 

Name of 

instance 
Vertices Edges 

k-Critical 

Nodes 

ER250 235 250 50 

ER500 466 700 80 

ER1000 941 1400 140 

ER2500 2344 3500 200 

BA500 500 499 50 

BA1000 1000 999 75 

BA2500 2500 2499 100 

BA5000 5000 4999 150 

WS250 250 1246 70 

WS500 500 1496 125 

WS1000 1000 4996 200 

WS1500 1500 4498 265 

FF250 250 514 50 

FF500 500 828 110 

FF1000 1000 1817 150 

FF2000 2000 3413 200 

3.1. Experimental setup 

There were several design and parameter selection issues 

while developing the proposed algorithm. The number of 

maximum iterations (                  the elite set size 

(              ), and the step for evolutionary PR 

(         ). We executed several preliminary experiments 

to define these parameters. For all the runs, the parameter 

values used are presented in Table 2. Running time for 

GRASP+PR is limited to 3600 seconds. 

Table 2: Parameters used for all experiments 

Parameters Values 

iterationNograsp 100 

eliteSet_size 3 

stepevoPR 10 

 

The proposed algorithm was implemented in C++ and 

compiled with gcc 4.9.3. It was tested on a PC equipped 

with a 2.7GHz AMD Athlon(tm) II X2 215 of CPU, and 

4.0 GB of RAM. 

3.2. Experimental results and comparison with 

previously proposed methods 

The summary of experimental results (the value of the 

objective function defined in eq. (1)) is given in table 3 in 

detail. These results have been summarized from 10 

independent runs. GRASP+PR performs in stable except 

ER2500, WS250, and WS1000 instances because the 

standard deviation is high for these three instances.   

Table 3: Summary results (mean (μ), standard deviation (σ), minimum 

(min) and maximum (max)) for GRASP+ePR  

Instance 
GRASP+PR 

μ σ min max 
ER250 298.4 1.6 297 301 

ER500 1627.2 33.1 1575 1673 

ER1000 5788.0 179.9 5482 5948 

ER2500 1069360.8 15947.6 1048464 1091041 

BA500 195.0 0.0 195 195 

BA1000 558.0 0.0 558 558 

BA2500 3704.0 0.0 3704 3704 

BA5000 10196.0 0.0 10196 10196 

WS250 11800.6 1856.6 9351 14734 

WS500 2233.4 30.1 2209 2263 

WS1000 306413.0 8756.9 297241 318801 

WS1500 14869.2 358.7 14177 15167 

FF250 194.0 0.0 194 194 

FF500 258.6 1.0 257 260 

FF1000 1263.1 1.4 1261 1266 

FF2000 4561.5 5.0 4554 4568 

Recently proposed three metaheuristics, i.e., VNS in [8], 

and SA and PHIL in [7] are used for the comparison of the 

performance of GRASP+PR. To evaluate these methods 

on a same environment, we have re-implemented these 

methods in C++ following the guidelines in the original 

publications. Running times for all methods are limited to 

3600 seconds. The objective function’s values of 

experiments are presented in table 4. In table 5, the 

computational time of GRASP+PR is displayed with its 

main competitor, VNS. VNS is stopped if it meets one of 

the following two conditions: (1) the number of iterations 

without improvement is over 1000 and (2) running time 

reaches 3600 seconds. It is important to note that for SA 

and PHIL methods, the quality of solution obtained by 

them is far from that of solutions obtained by GRASP+PR. 

Therefore, comparison of GRASP+PR with SA and PHIL 

in terms of computational time does not make sense.  

 

From results in table 4 and 5, we highlight the following 

elements: 

 GRASP+PR finds the best objective function’s 

values in 13 of 16 instances. 

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

3

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.



 

 GRASP+PR is faster than VNS that is the main 

competitor of GRASP+PR in terms of quality of 

solution (see Table 4). 

Table 4: Comparison of the minimum value of objective function for SA, 

PHIL, VNS, and GRASP+PR in terms of quality of solution 

Instance SA PHIL VNS GRASP+PR 

ER250 7700 6700 298 297 

ER500 48627 44255 1542 1575 

ER1000 234479 229576 5628 5482 

ER2500 2011122 2009132 1052406 1048464 

BA500 997 892 195 195 

BA1000 3770 3057 559 558 

BA2500 31171 28044 3704 3704 

BA5000 170998 146753 10196 10196 

WS250 14251 13786 6610 9351 

WS500 54201 53779 2230 2209 

WS1000 311700 308596 154813 297241 

WS1500 717369 703241 15692 14177 

FF250 1841 1386 194 194 

FF500 2397 1904 257 257 

FF1000 92800 59594 1263 1261 

FF2000 387248 256905 4584 4554 

The best of four results is displayed in bold font 

Table 5: Comparison of computational time for VNS and GRASP+PR 

Instance VNS GRASP+PR 

ER250 116.1 15.6 

ER500 913.6 133.3 

ER1000 3600.0 980.0 

ER2500 3600.0 3600.0 

BA500 301.4 35.0 

BA1000 1874.1 187.0 

BA2500 3600.0 1905.0 

BA5000 3600.0 3600.0 

WS250 1352.6 21.3 

WS500 3600.0 187.0 

WS1000 3600.0 777.0 

WS1500 3600.0 2779.0 

FF250 41.6 12.1 

FF500 419.2 63.0 

FF1000 3600.0 594.5 

FF2000 3600.0 3600.0 

4. Conclusions and future work 

We have proposed GRASP with Path Relinking for the 

Critical Node Detection Problem. The algorithm has been 

tested on the well-known 16 instances that have from 235 

to 5000 nodes and compared with the previously proposed 

three methods. The proposed algorithm finds the best 

solution in 13 of 16. In addition, GRASP with Path 

Relinking is faster than the main competitor, VNS. 

This work can be extended as creating larger instances and 

testing the proposed algorithm on them. Also, we propose 

a simple swapping method based on greedy strategy for 

the moving of Path Relinking. Hence, other variants of the 

Path Relinking for Critical Node Detection Problem may 

exist and examining these variants could be a promising 

work. 
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