

Heuristic Algorithm for Identifying Critical Nodes in Graphs

Dalaijargal Purevsuren1, Gang Cui1, Nwe Nwe Htay Win1, and Xiufeng Wang1

 1 School of Computer Science and Technology, Harbin Institute of Technology,

Harbin 150001, China

{dalaijargal, cg, nwenwehtaywin, wxf}@hit.edu.cn

Abstract
The paper presents Greedy Randomized Adaptive Search

Procedure with Path Relinking (GRASP with PR) for the Critical

Node Detection Problem (CNDP). An evolutionary Path

Relinking mechanism is added to GRASP with PR to intensify.

Our computational experiments show that this algorithm is a

competitive method compared with the previously proposed

methods for solving CNDP such as Variable Neighborhood

Search and Simulated Annealing.

Keywords: Combinatorial Optimization; Heuristic Search;

GRASP with Path Relinking; Critical Node Detection Problem;

1. Introduction

Identifying a small number of key nodes from a network

has important role for many cases in the real world. For

example, identifying key members can be used for

network immunization when it is expensive to vaccinate

all members of network, and only a limited number of

members can be vaccinated. The study of covert terrorist

networks can be illustrated another application. Destroying

a member of a terrorist network may need a large amount

of resources. In this case, identifying key members of a

terrorist network could be crucial for a government.

Given an undirected graph , and an integer k, the

identifying critical nodes of a graph involves the finding a

set of k nodes of the graph whose deletion become

the graph with minimum pairwise connectivity [1]. It is

called the Critical Node Detection Problem (CNDP).

Mathematically, the objective function of CNDP is

calculated by the formula defined in eq. (1).

 { }

Formally, CNDP is to find whose objective function

 gives minimum value.

An integer linear programming model and proof of NP-

completeness for CNDP are provided in [1], and the

authors introduce a heuristic on a limited number of

network structures with a small number of nodes. Also,

CNDP is NP-complete on trees with non-unit edge costs

while it is solvable within polynomial time when the input

graphs have tree structure with unit edge costs [2], and the

authors in [2] propose a dynamic programming method.

With limitations on graph’s structure, i.e., bounded tree-

width, and series parallel graphs, dynamic programming

approaches are proposed in [3], [4], and a branch and cut

algorithm is presented in [5]. An approximation algorithm

based on a randomized rounding is introduced in [6]. For

larger general graphs with up to 5000 vertices,

Metaheuristics, a simulated annealing (SA) and

population- based incremental learning algorithms (PHIL),

are proposed and experimentally compared in [7], and the

authors create random graphs based on Barabasi-Albert,

Erdos-Renyi, Forest-Fire, Watts-Strogatz network models

for evaluation. A variable neighborhood search is

proposed in [8] and tested on the same instances with [7].

In the paper, we propose GRASP with PR for CNDP and

test it on well-known 16 instances defined in [7]. The

computational experiments show that the hybrid algorithm

is a competitive method compared to previously proposed

metaheuristics such as SA, PHIL, and VNS. The

remainder of the paper is structured as follows. Section

two describes the proposed algorithm in detail. The results

of the computational experiments are presented in section

three. Finally, we conclude the paper and discuss some

future work.

2. GRASP with PR for CNDP

GRASP is a multi-start procedure that iteratively executes

two main steps, namely construction and local search. The

aim of the construction step is to discover a promising

basin from solution space while the aim of the local search

step is to improve the constructed solution and find the

optimal solution of the basin. For a more complete

description and recent survey of GRASP, we refer the

readers to [9], [10].

This section describes the design of GRASP with Path

Relinking (GRASP+PR) for CNDP. Firstly, we give

general scheme of hybridization of GRASP with PR. Then,

the sub-procedures of the scheme are described in the

following sub-sections.

PR, originally proposed as intensification tool in the

context of tabu search in [11], can be used as an

enhancement to the basic GRASP procedure by exploring

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

1

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

trajectories between the two high quality solutions

obtained by a heuristic algorithm [9, 10]. A set of the high

quality solutions is maintained during GRASP iterations.

The set of high quality is called elite set. A member in the

elite set is randomly selected for first solution of PR. The

second solution is obtained by GRASP. Then PR will

relink the two solutions. After that, the new solution

created by PR will be a candidate for inclusion in the elite

set.

The general scheme of GRASP with PR is given in Fig. 1.

The percentage symbol (%) indicates module operator in

the line 15.

Fig. 1 Pseudocode of GRASP with PR algorithm for CNDP.

2.1 Local Search

The aim of the local search step is to explore

neighborhoods of the solution obtained by previous

construction step in order to find the optimal solution in

the region. The standard hill climbing is used for local

search in this study. To explore neighborhoods, a

neighborhood structure is needed to be defined for a

specific problem. In the context of CNDP, neighborhoods

of a solution are the set of solutions which can be visited

by removing a node from V’ and adding a node among

V\V’ into the current solution. Local search stops if the

number of iterations is reached the pre-defined limit

(). The best solution is returned as the local

optimal solution.

2.2 Path Relinking

Let A and B be two solutions to be relinked by PR. PR

procedure starts with A and gradually transforms it into B

by successively swapping elements from and

[11]. At each step of PR, two nodes are selected by

examining contribution in objective function’s value. The

first node is a node from A\B that is minimum increase in

objective function’s value. The second node is a node from

B\A that is maximum increase in objective function’s

value. Then the first node is removed from A and the

second node is added into A. This procedure is repeated

until A reaches B. The pseudocode of PR is presented in

Fig. 2. The standard Hill Climbing addressed in section 2.1

is also used for the local search in PR.

Fig. 2 Pseudocode of evolutionary PR for CNDP.

2.3 Updating Elite Set

Candidate solutions have to satisfy two conditions in order

to become a member of the elite set. The first condition is

that the candidate solution has to be different with each

solution in the current elite set. If the candidate satisfies

the first condition, it can be considered as different from

the elite set, and will be checked with the second condition.

The second condition is that the candidate has to be better

than its own parent solution in terms of quality of solution.

The candidate is replaced with its parent solution if it

satisfies both two conditions.

2.4 Evolutionary Path Relinking

PR can also be used as intensification tool of elite sets [10].

It is called evolutionary PR. In the evolutionary PR, PR is

periodically applied to several members of the elite set. In

the study, PR is called in every iterations and

each pair in the elite set is relinked by PR. The resulting

solution of each evolutionary path relinking will be a

candidate for inclusion in elite set.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

2

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

3. Computational Experiments

In this section, we will address about computational

experiment and comparison of the performance of the

proposed algorithm with the previously proposed methods

for CNDP. We use instances from [7] for evaluation and

the detailed information of the instances is presented in

Table 1.

Table 1: Sizes of the graphs from [7]

Name of

instance
Vertices Edges

k-Critical

Nodes

ER250 235 250 50

ER500 466 700 80

ER1000 941 1400 140

ER2500 2344 3500 200

BA500 500 499 50

BA1000 1000 999 75

BA2500 2500 2499 100

BA5000 5000 4999 150

WS250 250 1246 70

WS500 500 1496 125

WS1000 1000 4996 200

WS1500 1500 4498 265

FF250 250 514 50

FF500 500 828 110

FF1000 1000 1817 150

FF2000 2000 3413 200

3.1. Experimental setup

There were several design and parameter selection issues

while developing the proposed algorithm. The number of

maximum iterations (the elite set size

(), and the step for evolutionary PR

(). We executed several preliminary experiments

to define these parameters. For all the runs, the parameter

values used are presented in Table 2. Running time for

GRASP+PR is limited to 3600 seconds.

Table 2: Parameters used for all experiments

Parameters Values

iterationNograsp 100

eliteSet_size 3

stepevoPR 10

The proposed algorithm was implemented in C++ and

compiled with gcc 4.9.3. It was tested on a PC equipped

with a 2.7GHz AMD Athlon(tm) II X2 215 of CPU, and

4.0 GB of RAM.

3.2. Experimental results and comparison with

previously proposed methods

The summary of experimental results (the value of the

objective function defined in eq. (1)) is given in table 3 in

detail. These results have been summarized from 10

independent runs. GRASP+PR performs in stable except

ER2500, WS250, and WS1000 instances because the

standard deviation is high for these three instances.

Table 3: Summary results (mean (μ), standard deviation (σ), minimum

(min) and maximum (max)) for GRASP+ePR

Instance
GRASP+PR

μ σ min max
ER250 298.4 1.6 297 301

ER500 1627.2 33.1 1575 1673

ER1000 5788.0 179.9 5482 5948

ER2500 1069360.8 15947.6 1048464 1091041

BA500 195.0 0.0 195 195

BA1000 558.0 0.0 558 558

BA2500 3704.0 0.0 3704 3704

BA5000 10196.0 0.0 10196 10196

WS250 11800.6 1856.6 9351 14734

WS500 2233.4 30.1 2209 2263

WS1000 306413.0 8756.9 297241 318801

WS1500 14869.2 358.7 14177 15167

FF250 194.0 0.0 194 194

FF500 258.6 1.0 257 260

FF1000 1263.1 1.4 1261 1266

FF2000 4561.5 5.0 4554 4568

Recently proposed three metaheuristics, i.e., VNS in [8],

and SA and PHIL in [7] are used for the comparison of the

performance of GRASP+PR. To evaluate these methods

on a same environment, we have re-implemented these

methods in C++ following the guidelines in the original

publications. Running times for all methods are limited to

3600 seconds. The objective function’s values of

experiments are presented in table 4. In table 5, the

computational time of GRASP+PR is displayed with its

main competitor, VNS. VNS is stopped if it meets one of

the following two conditions: (1) the number of iterations

without improvement is over 1000 and (2) running time

reaches 3600 seconds. It is important to note that for SA

and PHIL methods, the quality of solution obtained by

them is far from that of solutions obtained by GRASP+PR.

Therefore, comparison of GRASP+PR with SA and PHIL

in terms of computational time does not make sense.

From results in table 4 and 5, we highlight the following

elements:

 GRASP+PR finds the best objective function’s

values in 13 of 16 instances.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

3

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

 GRASP+PR is faster than VNS that is the main

competitor of GRASP+PR in terms of quality of

solution (see Table 4).

Table 4: Comparison of the minimum value of objective function for SA,

PHIL, VNS, and GRASP+PR in terms of quality of solution

Instance SA PHIL VNS GRASP+PR

ER250 7700 6700 298 297

ER500 48627 44255 1542 1575

ER1000 234479 229576 5628 5482

ER2500 2011122 2009132 1052406 1048464

BA500 997 892 195 195

BA1000 3770 3057 559 558

BA2500 31171 28044 3704 3704

BA5000 170998 146753 10196 10196

WS250 14251 13786 6610 9351

WS500 54201 53779 2230 2209

WS1000 311700 308596 154813 297241

WS1500 717369 703241 15692 14177

FF250 1841 1386 194 194

FF500 2397 1904 257 257

FF1000 92800 59594 1263 1261

FF2000 387248 256905 4584 4554

The best of four results is displayed in bold font

Table 5: Comparison of computational time for VNS and GRASP+PR

Instance VNS GRASP+PR

ER250 116.1 15.6

ER500 913.6 133.3

ER1000 3600.0 980.0

ER2500 3600.0 3600.0

BA500 301.4 35.0

BA1000 1874.1 187.0

BA2500 3600.0 1905.0

BA5000 3600.0 3600.0

WS250 1352.6 21.3

WS500 3600.0 187.0

WS1000 3600.0 777.0

WS1500 3600.0 2779.0

FF250 41.6 12.1

FF500 419.2 63.0

FF1000 3600.0 594.5

FF2000 3600.0 3600.0

4. Conclusions and future work

We have proposed GRASP with Path Relinking for the

Critical Node Detection Problem. The algorithm has been

tested on the well-known 16 instances that have from 235

to 5000 nodes and compared with the previously proposed

three methods. The proposed algorithm finds the best

solution in 13 of 16. In addition, GRASP with Path

Relinking is faster than the main competitor, VNS.

This work can be extended as creating larger instances and

testing the proposed algorithm on them. Also, we propose

a simple swapping method based on greedy strategy for

the moving of Path Relinking. Hence, other variants of the

Path Relinking for Critical Node Detection Problem may

exist and examining these variants could be a promising

work.

References
 [1] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M.

Pardalos, “Detecting critical nodes in sparse graphs”,

Computers & Operations Research, Vol. 36, No. 7, 2009, pp.

2193–2200.

[2] M. Di Summa, A. Grosso, and M. Locatelli, “Complexity of

the critical node problem over trees”, Computers &

Operations Research, Vol. 38, No. 12, 2011, pp. 1766–1774.

[3] B. Addis, M. Di Summa, and A. Grosso, “Identifying critical

nodes in undirected graphs: Complexity results and

polynomial algorithms for the case of bounded treewidth”,

Discrete Applied Mathematics, Vol. 161, No. 16–17, 2013,

pp. 2349–2360.

[4] S. Shen and J. C. Smith, “Polynomial-time algorithms for

solving a class of critical node problems on trees and series-

parallel graphs”, Networks, Vol. 60, No. 2, 2012, pp. 103–

119.

[5] M. Di Summa, A. Grosso, and M. Locatelli, “Branch and cut

algorithms for detecting critical nodes in undirected graphs”,

Computational Optimization and Applications, Vol. 53, No.

3, 2012, pp. 649–680.

[6] M. Ventresca and D. Aleman, “A derandomized

approximation algorithm for the critical node detection

problem”, Computers & Operations Research, Vol. 43, 2014,

pp. 261–270.

[7] M. Ventresca, “Global search algorithms using a

combinatorial unranking-based problem representation for

the critical node detection problem”, Computers &

Operations Research, Vol. 39, No. 11, 2012, pp. 2763–2775.

[8] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia,

“VNS solutions for the Critical Node Problem”, Electronic

Notes in Discrete Mathematics, Vol. 47, 2015, pp. 37–44.

[9] M. G. C. RESENDE and C. C. Ribeiro, “GRASP: Greedy

randomized adaptive search procedures”, in Search

Methodologies - Introductory tutorials in optimization and

decision support systems, 2nd ed., Springer, 2014, pp. 287–

312.

[10] P. Festa and M. G. C. RESENDE, “Hybridizations of

GRASP with Path-Relinking”, in Hybrid Metaheuristics,

Vol. 434, Berlin Heidelberg: Springer, 2013, pp. 135–155.

[11] F. Glover, “Tabu Search and Adaptive Memory

Programming — Advances, Applications and Challenges”, in

Interfaces in Computer Science and Operations Research,

Vol. 7, Springer US, 1997, pp. 1–75.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

4

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

